Higher-dimensional coherence

Chris Lambie-Hanson

Institute of Mathematics Czech Academy of Sciences

ESTC 2024 Münster 20 September 2024 Joint work with Jeffrey Bergfalk and Jing Zhang.

I. Coherent Aronszajn trees

Coherent Aronszajn trees

Let κ be a regular uncountable cardinal. Given two functions f and g, let f = g denote the assertion that

 $\{\alpha \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \mid f(\alpha) \neq g(\alpha)\}$

is finite. A coherent κ -Aronszajn tree (with maps into ω) is a subtree $T \subseteq {}^{<\kappa}\omega$ of height κ such that

- **1** for all $s, t \in T$, we have $s =^* t$;
- **2** there is no $f \in {}^{\kappa}\omega$ such that $\forall \alpha < \kappa \ f \upharpoonright \alpha \in T$.

Some facts

- (Aronszajn) coherent ℵ₁-Aronszajn trees exist;
- (B. König) if □(κ) holds, then there exists a coherent κ-Aronszajn tree;
- (Todorčević) If the P-ideal dichotomy (PID) holds and κ > ℵ₁ is regular, then there are no coherent κ-Aronszajn trees.

Nontrivial coherence and cohomology

The existence of a coherent κ -Aronszajn tree is equivalent to the existence of a family of functions $\Phi = \langle \varphi_{\alpha} : \alpha \to \mathbb{Z} \mid \alpha < \kappa \rangle$ that is

- *(coherent)* for all $\alpha < \beta < \kappa$, $\varphi_{\alpha} =^{*} \varphi_{\beta}$; and
- *(nontrivial)* there is no $\psi : \kappa \to \mathbb{Z}$ such that $\psi =^* \varphi_{\alpha}$ for all $\alpha < \kappa$.

They both end up being equivalent to the assertion that the first cohomology group of κ (with the order topology) with coefficients in \mathbb{Z} is nontrivial, i.e., $H^1(\kappa, \mathbb{Z}) \neq 0$.

II. Higher coherence

2-coherence

Higher analogues of coherent Aronszajn trees naturally arise through cohomological considerations.

Definition

A family of functions $\Phi = \langle \varphi_{\alpha\beta} : \alpha \to \mathbb{Z} \mid \alpha < \beta < \kappa \rangle$ is

• 2-coherent if, for all $\alpha < \beta < \gamma < \kappa$, we have

$$\varphi_{\beta\gamma} - \varphi_{\alpha\gamma} + \varphi_{\alpha\beta} =^* 0$$

i.e., $\varphi_{\alpha\beta} + \varphi_{\beta\gamma} =^* \varphi_{\alpha\gamma}$.

• 2-trivial if there is a family $\Psi = \langle \psi_{\alpha} : \alpha \to \mathbb{Z} \mid \alpha < \kappa \rangle$ such that, for all $\alpha < \beta < \kappa$, we have

$$\psi_{\beta} - \psi_{\alpha} =^* \varphi_{\alpha\beta}.$$

2-trivial families are 2-coherent. $H^2(\kappa, \mathbb{Z}) = 0$ iff every 2-coherent family as above is 2-trivial.

Some facts

We can similarly define *n*-coherent and *n*-trivial families for $2 < n < \omega$; $H^n(\kappa, \mathbb{Z}) = 0$ iff every *n*-coherent family on κ is *n*-trivial.

- (Goblot) If $n < \omega$ and $\kappa < \aleph_n$, then $H^n(\kappa, \mathbb{Z}) = 0$.
- If κ is weakly compact, then $H^n(\kappa, \mathbb{Z}) = 0$ for all $1 \le n < \omega$.
- If κ is regular and above the least ω₁-strongly compact cardinal, then Hⁿ(κ, ℤ) = 0 for all 1 ≤ n < ω.
- (Bergfalk–LH) If V = L, then Hⁿ(κ, Z) ≠ 0 for all 1 ≤ n < ω and all regular κ ≥ ℵ_n such that κ is not weakly compact. (Some combinations of squares and diamonds are all that are needed for this.)

Recent vanishing results

There have recently been some nontrivial vanishing results about $H^n(\kappa, \mathbb{Z})$ for "small" values of κ .

Theorem (Bergfalk–LH–Zhang)

If κ is regular and carries and \aleph_1 -indecomposable ultrafilter, then $H^n(\kappa, \mathbb{Z}) = 0$ for all $1 \le n < \omega$. In particular, it is consistent that $H^n(\omega_{\omega+1}, \mathbb{Z}) = 0$ for all $1 \le n < \omega$.

Recently, Eskew and Hayut constructed a model of ZFC in which the \aleph_n 's carry many dense ideals. By arguments of Bergfalk–LH–Zhang, in this model we have

$$H^n(\omega_m,\mathbb{Z})=0$$

for all $1 \leq n < m < \omega$.

This raises the natural question: must $H^n(\omega_n, \mathbb{Z}) \neq 0$?

- (Aronszajn) $H^1(\omega_1,\mathbb{Z}) \neq 0$.
- (B. Mitchell) $H^n(\omega_n, \bigoplus_{\omega_n} \mathbb{Z}) \neq 0.$
- (Bergfalk–LH–Zhang) $H^n(\omega_n \cdot \omega_n, \mathbb{Z}) \neq 0.$

Theorem (Bergfalk–LH–Zhang)

If
$$H^1(\omega_2,\mathbb{Z})=0$$
, then $H^2(\omega_2,\mathbb{Z})\neq 0$.

We believe the arguments of the above theorem should generalize to yield that for all $1 \le n < \omega$, there is $1 \le m \le n$ such that $H^m(\omega_n, \mathbb{Z}) \ne 0$, but details remain to be checked.

Trivializing families

However, recent work indicates that, in contrast with the 1-dimensional case, nontrivial 2-coherent families on ω_2 are typically *fragile*.

Theorem (Bergfalk–LH–Zhang)

Suppose that CH holds and Φ is a 2-coherent family on ω_2 . Then

- 1 there is a $(<\omega_2)$ -distributive forcing \mathbb{P} such that $\Vdash_{\mathbb{P}}$ " Φ is 2-trivial";
- 2 there is a countably closed, \aleph_2 -cc forcing \mathbb{Q} such that $\Vdash_{\mathbb{Q}}$ " Φ is 2-trivial".

In contrast, there are always coherent ω_1 -Aronszajn trees that cannot be trivialized without collapsing ω_1 . It is currently unclear whether either of the posets identified above can be iterated to yield the consistency of $H^2(\omega_2, \mathbb{Z}) = 0$.

Winter School 2025

Winter School in Abstract Analysis

Set Theory and Topology Section

Jan. 25 - Feb. 1, 2025

Hejnice, Czech Republic

Tutorials by

- Dana Bartošová
- Will Brian
- Spencer Unger
- Jouko Väänänen (tentative)

Registration should open in October. More information at https://www.winterschool.eu

Thank you!

