Generalized almost disjoint families and injective Banach spaces

Chris Lambie-Hanson

Institute of Mathematics Czech Academy of Sciences

> BLAST 2024 Denton, TX 7 April 2024

I. Injective Banach spaces

Injective Banach spaces

Definition

A Banach space E is *injective* if, for every Banach space X and every subspace $Y \subset X$, every continuous linear map $T: Y \to E$ extends to a continuous linear map $T': X \to E$.

Recall that, given a set Γ , we can form the following spaces.

- $\ell^{\infty}(\Gamma)$ is the space of all bounded functions $f: \Gamma \to \mathbb{R}$.
- $c_0(\Gamma)$ is the space of all functions $f:\Gamma\to\mathbb{R}$ such that, for all $\varepsilon>0$, the set

$$\{\gamma \in \Gamma \mid |f(\gamma)| > \varepsilon\}$$

is finite.

$$\ell^{\infty} = \ell^{\infty}(\mathbb{N}), \quad c_0 = c_0(\mathbb{N})$$

Fact

A Banach space E is injective iff it is a complemented subspace of $\ell^{\infty}(\Gamma)$ for some set Γ , i.e., $\ell^{\infty}(\Gamma) \cong E \bigoplus X$ for some space X.

Injective dimension

The category of Banach spaces has *enough* injective objects: every Banach space embeds as a closed subspace of an injective Banach space. Given a Banach space X, we can then form an *injective* resolution of X, i.e., an exact sequence of maps

$$0 \to X \to E_0 \to E_1 \to E_2 \to \cdots$$

such that each E_i is injective. (Recall that *exactness* is the requirement that the image of each map equals the kernel of the following map.) The *injective dimension* of X is the least $i \in \mathbb{N}$ such that there exists an injective resolution of the form

$$0 \to X \to E_0 \to \cdots \to E_i \to 0 \to \cdots$$

or ∞ if no such *i* exists.

Question

What is the injective dimension of c_0 ?

Proposition (Phillips)

c₀ is not injective.

Proof sketch.

Consider the short exact sequence

$$0 \to c_0 \xrightarrow{\iota} \ell^{\infty} \xrightarrow{\pi} \ell^{\infty}/c_0 \to 0.$$

If c_0 were injective, this sequence would split, i.e., there would be a continuous linear map $\sigma:\ell^\infty/c_0\to\ell^\infty$ such that $\pi\circ\sigma=\mathrm{id}$. Such a map σ would select an element from each equivalence class in ℓ^∞/c_0 .

Proof sketch (cont.)

Let $\mathcal{A} \subseteq [\omega]^{\omega}$ be an uncountable almost disjoint family. For each $A \in \mathcal{A}$, let 1_A be its characteristic function. Then, for all finite nonempty $\mathcal{B} \subseteq \mathcal{A}$,

$$\left\| \sum_{A \in \mathcal{B}} [1_A] \right\|_{\ell^{\infty}/c_0} = 1.$$

For each $A \in \mathcal{A}$, fix $m_A \in A$ such that $\sigma([1_A])(m_A) > 0.99$. Find an $m \in \omega$ and an uncountable $\mathcal{A}' \subseteq \mathcal{A}$ such that $m_A = m$ for all $A \in \mathcal{A}'$. Now, for all finite nonempty $\mathcal{B} \subseteq \mathcal{A}'$, we have

$$\sigma\left(\sum_{A\in\mathcal{B}}[1_A]\right)(m)>0.99|\mathcal{B}|.$$

Thus, σ takes elements of the unit ball of ℓ^{∞}/c_0 to elements of ℓ^{∞} of arbitrarily high norm, contradicting the fact that σ is continuous (and hence bounded).

One more step

We can do better, using the following theorem of Rosenthal.

Theorem (Rosenthal)

If E is an injective Banach space, Γ is a set, and E contains a subspace isomorphic to $c_0(\Gamma)$, then it contains a subspace isomorphic to $\ell^{\infty}(\Gamma)$.

Corollary (Amir)

 ℓ^{∞}/c_0 is not injective.

Proof.

In the notation of the previous proof, $\{[1_A] \mid A \in \mathcal{A}\}$ generates a copy of $c_0(\mathcal{A})$ in ℓ^∞/c_0 . We can take $|\mathcal{A}| = 2^{\aleph_0}$. If ℓ^∞/c_0 were injective, it would then contain a copy of $\ell^\infty(2^{\aleph_0})$, but it is too small for this.

Injective dimension can be reformulated as follows. Given *any* injective resolution

$$0 \xrightarrow{\iota_{-1}} X = E_{-1} \xrightarrow{\iota_0} E_0 \xrightarrow{\iota_1} E_1 \xrightarrow{\iota_2} \cdots,$$

the injective dimension of X is the least i such that $E_{i-1}/\operatorname{im}(\iota_{i-1})$ is injective.

Corollary

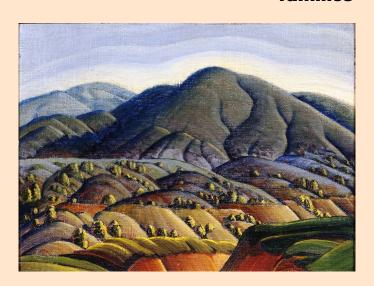
The injective dimension of c_0 is at least 2.

Proof.

 c_0 has an injective resolution beginning

$$0 \to c_0 \to \ell^{\infty} \to \cdots$$
.

II. Generalized almost disjoint families



Generalized AD families

Definition

Let K be a topological space (usually compact, Hausdorff, totally disconnected, not extremally disconnected). A generalized almost disjoint family in K is a collection $\mathcal A$ of subsets of K such that:

1) For all finite, nonempty $\mathcal{B} \subseteq \mathcal{A}$, the set

 $\bigcup \mathcal{B}$

is a regular open subset of K that is not closed.

2 For all distinct $A, B \in \mathcal{A}$, the set $A \cap B$ is closed.

If $K = \omega + 1$, then a generalized almost disjoint family in K is simply a classical (nontrivial) almost disjoint family $\mathcal{A} \subseteq [\omega]^{\omega}$.

Function spaces

If K is a compact Hausdorff space, then C(K) is the Banach space of continuous functions from K to \mathbb{R} .

Fact

If K is extremally disconnected, then C(K) is injective.

If D is a dense subset of K, then C(K) embeds as a closed subspace of $\ell^{\infty}(D)$. This leads us to be interested in quotient spaces of the form

$$\ell^{\infty}(D)/C(K)$$
.

Let K be a compact Hausdorff space and D a dense subset of K.

Theorem (LH-Schrittesser)

If there is a generalized AD family in K of cardinality κ , then $\ell^{\infty}(D)/C(K)$ contains a subspace isomorphic to $c_0(\kappa)$.

Proof sketch.

Let ${\mathcal A}$ be a generalized AD family of cardinality $\kappa.$ Then

$$\{[1_A \upharpoonright D] \mid A \in \mathcal{A}\}$$

generates a copy of $c_0(\kappa)$ inside $\ell^{\infty}(D)/C(K)$.

Corollary

If K contains a generalized AD family $\mathcal A$ such that $2^{|\mathcal A|} > 2^{|D|}$, then $\ell^\infty(D)/C(K)$ is not injective, so the injective dimension of C(K) is at least 2.

Recall that $\mathbb{N}^* = \beta \mathbb{N} \setminus \mathbb{N}$ is the Čech-Stone remainder of \mathbb{N} . Concretely, this is the space of nonprincipal ultrafilters on ω .

Theorem (LH-Schrittesser)

If CH holds (or just $\mathfrak{b}=\mathfrak{c}$), then \mathbb{N}^* contains a generalized AD family of cardinality 2^{\aleph_1} .

Proof sketch.

Build a sequence $\langle a_x \mid x \in {}^{<\omega_1} 2 \rangle$ of elements of $[\omega]^{\omega}$ such that

- 1 for all $x \sqsubseteq y \in {}^{<\omega_1}2$, $a_x \subsetneq^* a_y$;
- 2 for all incompatible $x, y \in {}^{<\omega_1}2$, $a_x \cap a_y = {}^*a_{x \wedge y}$;
- 3 for all $b \in [\omega]^{\omega}$, either
 - 1) $b \subseteq^* a_{x_0} \cup \ldots \cup a_{x_n}$ for some $x_0, \ldots, x_n \in {}^{<\omega_1}2$; or
 - 2 for all $x_0, \ldots, x_n \in {}^{<\omega_1}2$, there is $y \in {}^{<\omega_1}2$ incompatible with each x_i such that $|a_y \cap (b \setminus (a_{x_0} \cup \ldots \cup a_{x_n}))| = \aleph_0$.

Proof sketch (cont.)

Now every branch $f \in {}^{\omega_1}2$ through ${}^{<\omega_1}2$ determines a \subsetneq^* -increasing sequence $\langle a_f|_{\alpha} \mid \alpha < \omega_1 \rangle$ of elements of $[\omega]^{\omega}$. Let A_f be the collection of all $\mathcal{U} \in \mathbb{N}^*$ for which there exists $\alpha < \omega_1$ such that $a_f|_{\alpha} \in \mathcal{U}$. Then $\{A_f \mid f \in {}^{\omega_1}2\}$ is a generalized almost disjoint family.

Back to c_0

Fact

 ℓ^{∞}/c_0 is isomorphic to $C(\mathbb{N}^*)$.

Also, \mathbb{N}^* has a dense subset D of cardinality 2^{\aleph_0} . Therefore, c_0 has an injective resolution beginning

$$0 \to c_0 \xrightarrow{\iota_0} \ell^\infty \xrightarrow{\iota_1} \ell^\infty(2^{\aleph_0}) \to \cdots$$

such that

$$\ell^{\infty}(2^{\aleph_0})/\mathrm{im}(\iota_1) \cong \ell^{\infty}(D)/\mathcal{C}(\mathbb{N}^*).$$

Thus, if $\ell^{\infty}(D)/C(\mathbb{N}^*)$ is not injective, then the injective dimension of c_0 is at least 3.

Theorem

If CH holds, then the injective dimension of c_0 is at least 3.

Proof.

If CH holds, then \mathbb{N}^* contains a generalized AD family of size 2^{\aleph_1} . Thus, $\ell^\infty(D)/C(\mathbb{N}^*)$ contains a copy of $c_0(2^{\aleph_1})$. If $\ell^\infty(D)/C(\mathbb{N}^*)$ were injective, then it would contain a copy of $\ell^\infty(2^{\aleph_1})$, but it is too small for this, since

$$|\ell^{\infty}(2^{\aleph_1})| = 2^{2^{\aleph_1}}$$

but

$$|\ell^{\infty}(D)/C(\mathbb{N}^*)|=2^{2^{\aleph_0}}.$$

Questions

Question

Can the cardinal arithmetic assumptions be removed from these results?

Question

Is the injective dimension of c_0 infinite?

Questions

Question

Is
$$\operatorname{Ext}^2(c_0(\aleph_1), c_0) \neq 0$$
 in ZFC?

This question reduces to the following: Is there a continuous linear map from $c_0(\aleph_1)$ to $\ell^\infty(\mathbb{N}^*)/C(\mathbb{N}^*)$ that does not lift to a continuous linear map from $c_0(\aleph_1)$ to $\ell^\infty(\mathbb{N}^*)$?

The earlier construction using an uncountable AD family shows that $\operatorname{Ext}^1(c_0(\aleph_1),c_0)\neq 0$. On the other hand, $\operatorname{Ext}^n(c_0,c_0)=0$ for all $n\geq 1$.

Aviles et al. proved that, under CH, $\operatorname{Ext}^2(c_0(\aleph_1), c_0) \neq 0$. It is conceivable that $\operatorname{MA}_{\aleph_1}$ or PFA would yield the opposite conclusion.

Thank you!

