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I: Historical background



Prikry forcing

Suppose κ is a measurable cardinal and U is a normal measure on

κ. There is a forcing poset, which we denote PU , such that:
1 PU is cardinal-preserving;
2 forcing with PU adds an increasing sequence of ordinals,
⟨γi | i < ω⟩, cofinal in κ;

3 ⟨γi | i < ω⟩ diagonalizes U, i.e., for all X ∈ U, for all
sufficiently large i < ω, γi ∈ X .

PU is known as Prikry forcing (with respect to U). There is now
a large class of variations on Prikry forcing, known collectively as

Prikry-type forcings, which add diagonalizing sequences to a large

cardinal κ, to a set of the form Pκ(λ), or to a sequence of such
objects.



Outside guessing of clubs

Sequences approximating Prikry sequences appear in abstract

settings, as well. In these cases, we may not have a normal

measure on the relevant cardinal, so we consider sub-filters of the

club filter.

Theorem (Dz̆amonja-Shelah, [3])

Suppose that:

1 V is an inner model of W ;

2 κ is an inaccessible cardinal in V and a singular cardinal of

cofinality θ in W ;

3 (κ+)W = (κ+)V ;

4 ⟨Cα | α < κ+⟩ ∈ V is a sequence of clubs in κ.
Then, in W , there is a sequence ⟨γi | i < θ⟩ of ordinals such that,
for all α < κ+ and all sufficiently large i < θ, γi ∈ Cα.



Generalized outside guessing of clubs

A similar theorem is proven by Gitik [4], and it is extended by

Magidor and Sinapova [5], who also prove the following

generalization.

Theorem (Magidor-Sinapova, [5])

Suppose that n < ω and:

1 V is an inner model of W ;

2 κ is a regular cardinal in V and, for all m ≤ n, (κ+m)V has
countable cofinality in W ;

3 (κ+)W = (κ+n+1)V ;

4 ⟨Dα | α < κ+n+1⟩ ∈ V is a sequence of clubs in Pκ(κ+n).
Then, in W , there is a sequence ⟨xi | i < ω⟩ of elements of
(Pκ(κ+n))V such that, for all α < κ+n+1 and all sufficiently large
i < ω, xi ∈ Dα.



Applications

Theorem (Cummings-Schimmerling in the context of Prikry

forcing, [2])

Suppose that V is an inner model of W , κ is inaccessible in V

and a singular cardinal of countable cofinality in W , and

(κ+)W = (κ+)V .

Then □κ,ω holds in W .

Theorem (Brodsky-Rinot, [1])

Suppose that λ is a regular, uncountable cardinal, 2λ = λ+, and
P is a λ+-c.c. forcing notion of size ≤ λ+. Suppose moreover
that, in V P, λ is a singular ordinal and |λ| > cf(λ).

Then there is a λ+-Souslin tree in V P.



II: Fat trees and pseudo-Prikry sequences



Fat trees

Definition

Suppose κ is a regular, uncountable cardinal, n < ω, and, for all

m ≤ n, λm ≥ κ is a regular cardinal. Then

T ⊆
⋃
k≤n+1

∏
m<k

κm

is a fat tree of type (κ, ⟨λ0, . . . , λn⟩) if:
1 for all σ ∈ T and ℓ < lh(σ), we have σ ↾ ℓ ∈ T ;
2 for all σ ∈ T such that k := lh(σ) ≤ n,

succT (σ) := {α | σ⌢⟨α⟩ ∈ T} is (< κ)-club in κk .

Lemma

If C is a club in Pκ(κ+n), then there is a fat tree of type
(κ, ⟨κ+n, κ+n−1, . . . , κ⟩) such that, for every maximal σ ∈ T,
there is x ∈ C such that, for all m ≤ n, sup(x ∩ κ+m) = σ(n−m).



Outside guessing of fat trees

Theorem

Suppose that:

1 V is an inner model of W ;

2 in V , κ < λ are cardinals, with κ regular;

3 in W , θ < θ+2 < |κ|, θ is a regular cardinal, and there is a
⊆-increasing sequence ⟨xi | i < θ⟩ from (Pκ(λ))V such that⋃
i<θ xi = λ;

4 (λ+)V remains a cardinal in W ;

5 n < ω and, in V , ⟨λi | i ≤ n⟩ is a sequence of regular
cardinals from [κ, λ] and ⟨T (α) | α < λ+⟩ is a sequence of
fat trees of type (κ, ⟨λ0, . . . , λn⟩).

Then, in W , there is a sequence ⟨σi | i < θ⟩ such that, for all
α < λ+ and all sufficiently large i < θ, σi is a maximal element of

T (α).



Proof sketch (n = 0)

Our sequence of fat trees is just a sequence ⟨Cα | α < λ+⟩ of
clubs in λ0. Let X = (Pκ(λ))V . If f : X → λ0 and C ⊆ λ0 is
unbounded, define f C : X → λ0 by f C (x) = min(C \ f (x)).
Work first in V . Fix a sequence ⟨eβ | β < λ+⟩ such that
eβ : β → λ is an injection.
Define a sequence f⃗ = ⟨fβ | β < λ+⟩ of functions from X to λ0
satisfying:

1 for all β < γ < λ+ and all x ∈ X , if eγ(β) ∈ x , then
fβ(x) < fγ(x);

2 for all γ ∈ Sλ+<κ, there is a club Dγ in γ such that, for all
β ∈ Dγ , fβ < fγ ;

3 for all α, β < λ+, there is γ < λ+ such that f Cαβ < fγ .



Proof sketch (cont.)

Move now to W , where we have ⟨xi | i < θ⟩. Define a sequence
g⃗ = ⟨gβ | β < λ+⟩ from θ to λ0 by letting gβ(i) = fβ(xi). Note
that:

1 g⃗ is <∗-increasing;

2 for all γ ∈ Sλ+>θ , there is a club Dγ in γ such that, for all
β ∈ Dγ , gβ < gγ ;

3 θ+3 < λ+.

Therefore, g⃗ has an exact upper bound, i.e. a <∗-upper bound h

such that, for every h′ <∗ h, there is β < λ+ such that h′ <∗ gβ.

Moreover, we may assume cf(h)(i) > θ for all i < θ, so
h : θ → λ0. For i < θ, let γi = h(i). We claim that this works.



Proof sketch (cont.)

If not, then there is α < λ+ and an unbounded A ⊆ θ such that,
for all i ∈ A, γi ̸∈ Cα. Define h′ : θ → λ0 by

h′(i) =

{
0 if i ̸∈ A
max(Cα ∩ γi) if i ∈ A

h′ < h, so there is β < λ+ such that h′ <∗ gβ. But then there is

γ < λ+ such that f Cαβ < fγ . Now, for all sufficiently large i ∈ A,
we have

max(Cα ∩ h(i)) < gβ(i) < h(i) < min(Cα \ gβ(i)) < gγ(i).

In particular, h is not a <∗-upper bound for g⃗. Contradiction!



III: Diagonal sequences



Diagonal clubs

Definition

Suppose that θ is a regular cardinal and µ⃗ = ⟨µi | i < θ⟩ is an
increasing sequence of regular cardinals.

1 A diagonal club in µ⃗ is a sequence ⟨Ci | i < θ⟩ such that, for
all i < θ, Ci is club in µi .

2 If κ ≤ µ0 is a regular cardinal, then a diagonal club in Pκ(µ⃗)
is a sequence ⟨Di | i < θ⟩ such that, for all i < θ, Di is club
in Pκ(µi).



Diagonal ordinal sequences

Theorem

Suppose that:

1 V is an inner model of W ;

2 in V , µ is a singular cardinal of cofinality θ;

3 there is κ < µ such that every V -regular cardinal in [κ, µ)
has cofinality θ in W ;

4 in W , (µ+)V remains a cardinal and θ+2 < |µ|.
Then there are:

• an increasing sequence of regular cardinals
µ⃗ = ⟨µi | i < θ⟩ ∈ V , cofinal in µ;

• a function g ∈
∏
i<θ µi in W

such that, for every ⟨Ci | i < θ⟩ ∈ V that is a diagonal club in µ⃗,
for all sufficiently large i < θ, g(i) ∈ Ci .



Generalized diagonal sequences

Theorem

Suppose that:

1 V is an inner model of W ;

2 in V , cf(µ) = θ < κ = cf(κ) < µ are cardinals, with µ strong
limit;

3 in V , µ⃗ = ⟨µi | i < θ⟩ is an increasing sequence of regular
cardinals, cofinal in µ, with κ ≤ µ0;

4 in W , there is a ⊆-increasing sequence ⟨xi | i < θ⟩ from
(Pκ(µ))V such that

⋃
i<θ xi = µ;

5 in W , (µ+)V remains a cardinal and µ ≥ 2θ;
6 in V , ⟨D⃗(α) | α < µ+⟩ is a sequence of diagonal clubs in
Pκ(µ⃗).

Then, in W , there is ⟨yi | i < θ⟩ such that, for all α < µ+ and all
sufficiently large i < θ, yi ∈ D(α)i .
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