Pseudo-Prikry sequences (Joint and ongoing work with Spencer Unger)

Chris Lambie-Hanson

Department of Mathematics Bar-Ilan University

Arctic Set Theory Kilpisjärvi, Finland January 2017

I: Historical background

Prikry forcing

Suppose κ is a measurable cardinal and U is a normal measure on κ . There is a forcing poset, which we denote \mathbb{P}_U , such that:

- 1 \mathbb{P}_U is cardinal-preserving;
- 2 forcing with \mathbb{P}_U adds an increasing sequence of ordinals, $\langle \gamma_i \mid i < \omega \rangle$, cofinal in κ ;
- 3 (γ_i | i < ω) diagonalizes U, i.e., for all X ∈ U, for all sufficiently large i < ω, γ_i ∈ X.

 \mathbb{P}_U is known as *Prikry forcing* (with respect to *U*). There is now a large class of variations on Prikry forcing, known collectively as *Prikry-type forcings*, which add diagonalizing sequences to a large cardinal κ , to a set of the form $\mathcal{P}_{\kappa}(\lambda)$, or to a sequence of such objects.

Outside guessing of clubs

Sequences approximating Prikry sequences appear in abstract settings, as well. In these cases, we may not have a normal measure on the relevant cardinal, so we consider sub-filters of the club filter.

Theorem (Džamonja-Shelah, [3])

Suppose that:

- 1 V is an inner model of W;
- 2 κ is an inaccessible cardinal in V and a singular cardinal of cofinality θ in W;

3
$$(\kappa^+)^W = (\kappa^+)^V$$
;

4 $\langle C_{\alpha} \mid \alpha < \kappa^+ \rangle \in V$ is a sequence of clubs in κ .

Then, in W, there is a sequence $\langle \gamma_i | i < \theta \rangle$ of ordinals such that, for all $\alpha < \kappa^+$ and all sufficiently large $i < \theta$, $\gamma_i \in C_{\alpha}$.

Generalized outside guessing of clubs

A similar theorem is proven by Gitik [4], and it is extended by Magidor and Sinapova [5], who also prove the following generalization.

Theorem (Magidor-Sinapova, [5])

Suppose that $n < \omega$ and:

- 1 V is an inner model of W;
- 2 κ is a regular cardinal in V and, for all $m \leq n$, $(\kappa^{+m})^V$ has countable cofinality in W;

3
$$(\kappa^+)^W = (\kappa^{+n+1})^V$$
;

4 $\langle D_{\alpha} \mid \alpha < \kappa^{+n+1} \rangle \in V$ is a sequence of clubs in $\mathcal{P}_{\kappa}(\kappa^{+n})$.

Then, in W, there is a sequence $\langle x_i | i < \omega \rangle$ of elements of $(\mathcal{P}_{\kappa}(\kappa^{+n}))^V$ such that, for all $\alpha < \kappa^{+n+1}$ and all sufficiently large $i < \omega, x_i \in D_{\alpha}$.

Applications

Theorem (Cummings-Schimmerling in the context of Prikry forcing, [2])

Suppose that V is an inner model of W, κ is inaccessible in V and a singular cardinal of countable cofinality in W, and $(\kappa^+)^W = (\kappa^+)^V$. Then $\Box_{\kappa,\omega}$ holds in W.

Theorem (Brodsky-Rinot, [1])

Suppose that λ is a regular, uncountable cardinal, $2^{\lambda} = \lambda^{+}$, and \mathbb{P} is a λ^{+} -c.c. forcing notion of size $\leq \lambda^{+}$. Suppose moreover that, in $V^{\mathbb{P}}$, λ is a singular ordinal and $|\lambda| > cf(\lambda)$. Then there is a λ^{+} -Souslin tree in $V^{\mathbb{P}}$.

II: Fat trees and pseudo-Prikry sequences

Fat trees

Definition

Suppose κ is a regular, uncountable cardinal, $n < \omega$, and, for all $m \le n$, $\lambda_m \ge \kappa$ is a regular cardinal. Then

$$T \subseteq \bigcup_{k \le n+1} \prod_{m < k} \kappa_m$$

is a *fat tree* of type $(\kappa, \langle \lambda_0, \ldots, \lambda_n \rangle)$ if:

1 for all $\sigma \in T$ and $\ell < \ln(\sigma)$, we have $\sigma \upharpoonright \ell \in T$;

2 for all
$$\sigma \in T$$
 such that $k := \ln(\sigma) \le n$,
succ_T(σ) := { $\alpha \mid \sigma^{\frown} \langle \alpha \rangle \in T$ } is (< κ)-club in κ_k .

Lemma

If C is a club in $\mathcal{P}_{\kappa}(\kappa^{+n})$, then there is a fat tree of type $(\kappa, \langle \kappa^{+n}, \kappa^{+n-1}, \ldots, \kappa \rangle)$ such that, for every maximal $\sigma \in T$, there is $x \in C$ such that, for all $m \leq n$, $\sup(x \cap \kappa^{+m}) = \sigma(n-m)$.

Outside guessing of fat trees

Theorem

Suppose that:

- 1 V is an inner model of W;
- 2 in V, $\kappa < \lambda$ are cardinals, with κ regular;
- 3 in W, $\theta < \theta^{+2} < |\kappa|$, θ is a regular cardinal, and there is a \subseteq -increasing sequence $\langle x_i \mid i < \theta \rangle$ from $(\mathcal{P}_{\kappa}(\lambda))^V$ such that $\bigcup_{i < \theta} x_i = \lambda$;
- 4 $(\lambda^+)^V$ remains a cardinal in W;
- 5 n < ω and, in V, (λ_i | i ≤ n) is a sequence of regular cardinals from [κ, λ] and (T(α) | α < λ⁺) is a sequence of fat trees of type (κ, (λ₀,..., λ_n)).

Then, in W, there is a sequence $\langle \sigma_i | i < \theta \rangle$ such that, for all $\alpha < \lambda^+$ and all sufficiently large $i < \theta$, σ_i is a maximal element of $T(\alpha)$.

Proof sketch (n = 0)

Our sequence of fat trees is just a sequence $\langle C_{\alpha} \mid \alpha < \lambda^+ \rangle$ of clubs in λ_0 . Let $X = (\mathcal{P}_{\kappa}(\lambda))^V$. If $f : X \to \lambda_0$ and $C \subseteq \lambda_0$ is unbounded, define $f^C : X \to \lambda_0$ by $f^C(x) = \min(C \setminus f(x))$. Work first in V. Fix a sequence $\langle e_{\beta} \mid \beta < \lambda^+ \rangle$ such that $e_{\beta} : \beta \to \lambda$ is an injection. Define a sequence $\vec{f} = \langle f_{\beta} \mid \beta < \lambda^+ \rangle$ of functions from X to λ_0 satisfying:

- 1 for all $\beta < \gamma < \lambda^+$ and all $x \in X$, if $e_{\gamma}(\beta) \in x$, then $f_{\beta}(x) < f_{\gamma}(x)$;
- 2 for all $\gamma \in S^{\lambda^+}_{<\kappa}$, there is a club D_{γ} in γ such that, for all $\beta \in D_{\gamma}$, $f_{\beta} < f_{\gamma}$;
- 3 for all $\alpha, \beta < \lambda^+$, there is $\gamma < \lambda^+$ such that $f_{\beta}^{C_{\alpha}} < f_{\gamma}$.

Proof sketch (cont.)

Move now to W, where we have $\langle x_i | i < \theta \rangle$. Define a sequence $\vec{g} = \langle g_\beta | \beta < \lambda^+ \rangle$ from θ to λ_0 by letting $g_\beta(i) = f_\beta(x_i)$. Note that:

- 1 \vec{g} is <*-increasing;
- 2 for all $\gamma \in S_{>\theta}^{\lambda^+}$, there is a club D_{γ} in γ such that, for all $\beta \in D_{\gamma}$, $g_{\beta} < g_{\gamma}$;
- $\exists \ \theta^{+3} < \lambda^+.$

Therefore, \vec{g} has an *exact upper bound*, i.e. a <*-upper bound h such that, for every $h' <^* h$, there is $\beta < \lambda^+$ such that $h' <^* g_{\beta}$. Moreover, we may assume $cf(h)(i) > \theta$ for all $i < \theta$, so $h : \theta \to \lambda_0$. For $i < \theta$, let $\gamma_i = h(i)$. We claim that this works.

Proof sketch (cont.)

If not, then there is $\alpha < \lambda^+$ and an unbounded $A \subseteq \theta$ such that, for all $i \in A$, $\gamma_i \notin C_{\alpha}$. Define $h' : \theta \to \lambda_0$ by

$$h'(i) = \begin{cases} 0 & \text{if } i \notin A \\ \max(C_{\alpha} \cap \gamma_i) & \text{if } i \in A \end{cases}$$

h' < h, so there is $\beta < \lambda^+$ such that $h' <^* g_\beta$. But then there is $\gamma < \lambda^+$ such that $f_\beta^{C_\alpha} < f_\gamma$. Now, for all sufficiently large $i \in A$, we have

$$\max(C_{\alpha} \cap h(i)) < g_{\beta}(i) < h(i) < \min(C_{\alpha} \setminus g_{\beta}(i)) < g_{\gamma}(i).$$

In particular, h is not a $<^*$ -upper bound for \vec{g} . Contradiction!

III: Diagonal sequences

Diagonal clubs

Definition

Suppose that θ is a regular cardinal and $\vec{\mu} = \langle \mu_i \mid i < \theta \rangle$ is an increasing sequence of regular cardinals.

- 1 A diagonal club in $\vec{\mu}$ is a sequence $\langle C_i | i < \theta \rangle$ such that, for all $i < \theta$, C_i is club in μ_i .
- 2 If $\kappa \leq \mu_0$ is a regular cardinal, then a *diagonal club in* $\mathcal{P}_{\kappa}(\vec{\mu})$ is a sequence $\langle D_i | i < \theta \rangle$ such that, for all $i < \theta$, D_i is club in $\mathcal{P}_{\kappa}(\mu_i)$.

Diagonal ordinal sequences

Theorem

Suppose that:

- 1 V is an inner model of W;
- 2 in V, μ is a singular cardinal of cofinality θ ;
- there is κ < μ such that every V-regular cardinal in [κ, μ) has cofinality θ in W;
- 4 in W, $(\mu^+)^V$ remains a cardinal and $\theta^{+2} < |\mu|$.

Then there are:

- an increasing sequence of regular cardinals $\vec{\mu} = \langle \mu_i \mid i < \theta \rangle \in V$, cofinal in μ ;
- a function $g \in \prod_{i < \theta} \mu_i$ in W

such that, for every $\langle C_i | i < \theta \rangle \in V$ that is a diagonal club in $\vec{\mu}$, for all sufficiently large $i < \theta$, $g(i) \in C_i$.

Generalized diagonal sequences

Theorem

Suppose that:

- 1 V is an inner model of W;
- 2 in V, $cf(\mu) = \theta < \kappa = cf(\kappa) < \mu$ are cardinals, with μ strong limit;
- 3 in V, $\vec{\mu} = \langle \mu_i \mid i < \theta \rangle$ is an increasing sequence of regular cardinals, cofinal in μ , with $\kappa \le \mu_0$;
- 4 in W, there is a \subseteq -increasing sequence $\langle x_i | i < \theta \rangle$ from $(\mathcal{P}_{\kappa}(\mu))^{\vee}$ such that $\bigcup_{i < \theta} x_i = \mu$;
- 5 in W, $(\mu^+)^V$ remains a cardinal and $\mu \ge 2^{\theta}$;
- 6 in V, $\langle \vec{D}(\alpha) | \alpha < \mu^+ \rangle$ is a sequence of diagonal clubs in $\mathcal{P}_{\kappa}(\vec{\mu})$.

Then, in W, there is $\langle y_i | i < \theta \rangle$ such that, for all $\alpha < \mu^+$ and all sufficiently large $i < \theta$, $y_i \in D(\alpha)_i$.

References

- Ari Meir Brodsky and Assaf Rinot, *More notions of forcing add a Souslin tree*, Preprint.
- James Cummings and Ernest Schimmerling, *Indexed squares*, Israel Journal of Mathematics **131** (2002), 61–99. MR 1942302
- Mirna Džamonja and Saharon Shelah, On squares, outside guessing of clubs and I_{<f}[λ], Fundamenta Mathematicae 148 (1995), no. 2, 165–198. MR 1360144
- Moti Gitik, *Some results on the nonstationary ideal. II*, Israel Journal of Mathematics **99** (1997), 175–188. MR 1469092
- Menachem Magidor and Dima Sinapova, *Singular cardinals and square properties*, Proceedings of the American Mathematical Society, To appear.

Photo credits

Martina Lindqvist

Neighbours

www.martinalindqvist.com

Thank you!

