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Introduction



Overview
This talk will be about some interactions between set theory and
homological algebra, particularly around derived functors of the
inverse limit functor. This interaction has been fruitful in both
directions:

• Questions coming from homological algebra have led to the
development of new methods and notions in set theory.

• Set theoretic techniques have allowed for the solution of
various open problems in algebra.

A brief outline of the talk:

1 An introduction to inverse systems (of abelian groups),
inverse limits, and their derived functors.

2 Inverse systems indexed by ordinals, and connections to
coherent Aronszajn trees.

3 Inverse systems indexed by the Baire space.

4 Applications to strong homology and condensed mathematics.



I. Inverse systems and limits



Inverse systems

Definition

Suppose that (Λ,≤) is a directed set.
An inverse system (of abelian groups)
indexed by Λ is a family
A = ⟨Au, πuv | u ≤ v ∈ Λ⟩ such that:

• for all u ∈ Λ, Au is an abelian
group;

• for all u ≤ v ∈ Λ, πuv : Av → Au

is a group homomorphism;

• for all u ≤ v ≤ w ∈ Λ,
πuw = πuv ◦ πvw .



Level morphisms

If A and B are two inverse systems
indexed by the same directed set, Λ,
then a level morphism from A to B
is a family of group homomorphisms
f = ⟨fu : Au → Bu | u ∈ Λ⟩ such
that, for all u ≤ v ∈ Λ,
πBuv ◦ fv = fu ◦ πAuv .

With this notion of morphism, the class of all inverse systems
indexed by a fixed directed set Λ becomes a well-behaved category
AbΛ

op
(in particular, it is an abelian category).



Inverse limits

If A is an inverse system indexed by Λ, then we can form the
inverse limit, limA, which is itself an abelian group. Concretely,
limA can be seen as the subgroup of

∏
u∈Λ Au consisting of all

sequences ⟨au | u ∈ Λ⟩ such that, for all u ≤ v ∈ Λ, we have
au = πuv (av ).

If A and B are inverse systems and f : A → B, then f lifts to a
group homomorphism lim f : limA → limB. Concretely, this is
done by letting lim f(⟨au | u ∈ Λ⟩) = ⟨fu(au) | u ∈ Λ⟩ for all
⟨au | u ∈ Λ⟩ ∈ limA.

This turns lim into a functor from the category AbΛ
op

of inverse
systems indexed by Λ to the category Ab of abelian groups.

Question: How “nice” is this functor?



Exact sequences

In the category of inverse systems, kernels, images, and quotients
can be defined pointwise in the obvious way. For example, if
f : A → B is a level morphism, then ker(f) can be seen as the
inverse system ⟨ker(fu), πuv | u ≤ v ∈ Λ⟩, where πuv is simply
πAuv ↾ ker(fv ).

We say that a pair of morphisms A
f−→ B

g−→ C is exact at B if
im(f) = ker(g). A short exact sequence is a sequence

0 → A
f−→ B

g−→ C → 0 that is exact at A, B, and C.

In a short exact sequence as above, we have ker(f) = 0 (f is
injective) and im(g) = C (g is surjective). It can be helpful to
think of A as a subobject of B and to think of C as the quotient
B/A.



Exact functors

A functor F between abelian categories is said to be exact if it
preserves short exact sequences, i.e., if, whenever

0 → A
f−→ B

g−→ C → 0 is exact in the source category of F ,

0 → FA
F f−→ FB

Fg−−→ FC → 0 is exact in the target category of F .

The inverse limit functor is left exact: if 0 → A
f−→ B

g−→ C is exact
at A and B, then 0 → limA

lim f−−→ limB
lim g−−−→ limC is exact at

limA and limB. However, it fails to be exact, i.e., even if
im(g) = C, we might have im(lim g) ̸= limC.

The failure of lim to be exact essentially amounts to the failure of
lim to preserve quotients: if the quotient system B/A is defined,
then it need not be the case that limB/A ∼= limB/ limA.



An example (Λ = ω)

0 A B C 0

...
...

...
...

...

0 Z Z Z/3 0

0 Z Z Z/3 0

0 Z Z Z/3 0

f g

×2 ×2 ×2

×3

×2

mod 3

×2 ×2

×3

×2

mod 3

×2 ×2

×3 mod 3

limA = limB = 0 and limC = Z/3, so applying lim to this short
exact sequence yields 0 → 0 → 0 → Z/3 → 0, which is not exact
at Z/3.



Derived functors
Given any left exact functor F , there is a general procedure for
producing a sequence of (right) derived functors ⟨F n | n ∈ ω \ {0}⟩
that “measure” the failure of the functor F to be exact. These
derived functors then take short exact sequences

0 A B C 0f g

to long exact sequences

0 FA FB FC

F 1A F 1B F 1C

F 2A F 2B F 2C . . .

F f Fg

δ
F 1f F 1g

δ
F 2f F 2g

We will be interested in the derived functors ⟨limn | n ∈ ω \ {0}⟩.



Derived limits and cofinality
A pair of complementary theorems from the early 1970s
demonstrates a connection between the vanishing of derived
inverse limits and the cofinality of the indexing poset.

Theorem (Goblot, 1970)

Suppose that Λ is a directed set, n < ω, and cf(Λ) ≤ ℵn. Then, for
every A ∈ AbΛ

op
, we have

limn+2A = 0.

Theorem (B. Mitchell, 1973)

Suppose that Λ is a directed set, n < ω, and cf(Λ) ≥ ℵn. Then
there is A ∈ AbΛ

op
such that

limn+1A ̸= 0.



II. Ordinal-indexed systems



The systems Aδ and Bδ

Fix a limit ordinal δ and an abelian group H. For each ordinal
α < δ, let

Aα[H] :=
⊕
α

H and Bα[H] :=
∏
α

H.

Let Aα := Aα[Z] and Bα := Bα[Z]. For α ≤ β < δ, let
παβ : Bβ → Bα be the projection maps. These restrict to maps
from Aβ to Aα. Let Aδ = ⟨Aα, παβ | α ≤ β < δ⟩ and
Bδ = ⟨Bα, παβ | α ≤ β < δ⟩. Note that limBδ

∼=
∏

δ Z, while
limAδ consists of all φ ∈

∏
δ Z such that sppt(φ) ∩ α is finite for

all α < δ. If cf(δ) > ω, this is
⊕

δ Z. If cf(δ) = ω, it also includes
φ such that sppt(φ) has order type ω and is cofinal in δ.

The system Bδ has the property that limn Bδ = 0 for all n ≥ 1.
What about limn Aδ?

(Side remark: limn Aδ is equal to the Čech cohomology group
Ȟn(δ,Z), where δ is given the order topology induced by the
ordinal ordering.)



Computing derived limits
Consider the short exact sequence

0 → Aδ
ι−→ Bδ

p−→ Bδ/Aδ → 0.

Applying lim yields the exact sequence

0 → limAδ
lim ι−−→ limBδ

lim p−−−→ limBδ/Aδ → lim1Aδ → lim1Bδ = 0.

Thus, we have

lim1Aδ
∼=

limBδ/Aδ

im(lim(p))
.

Elements of limBδ/Aδ are (equivalence classes of) sequences
⟨φα ∈

∏
α Z | α < δ⟩ such that, for all α < β < κ, we have

φα =∗ φβ ↾ α (where =∗ denotes equality mod finite). Recall that
limBδ =

∏
δ Z. Elements of im(lim(p)) are thus all (eq. classes of)

sequences ⟨φα | α < δ⟩ for which there exists a single function
ψ ∈

∏
δ Z such that φα =∗ ψ ↾ α for all α < δ.



Coherent Aronszajn trees
Therefore, lim1Aδ ̸= 0 if and only if there is a sequence
⟨φα : α→ Z | α < δ⟩ that is

1 (coherent) φα =∗ φβ ↾ α for all α ≤ β < δ;

2 (nontrivial) there is no ψ : δ → Z such that ψ ↾ α =∗ φα for
all α < δ.

When δ is a regular cardinal, those familiar with combinatorial set
theory may recognize that this is equivalent to the existence of a
coherent δ-Aronszajn tree. These are well-studied set-theoretic
objects, facts about which immediately transfer to yield the
following:

• lim1Aω = 0;

• lim1Aω1 ̸= 0;

• if V = L, then lim1Aκ ̸= 0 for all uncountable, regular
cardinals κ that are not weakly compact;

• the Proper Forcing Axiom implies that lim1Aκ = 0 for all
regular κ ≥ ω2.



Higher dimensions
Similar, but higher dimensional, characterizations exist for the
nonvanishing of higher derived limits. For example, lim2Aδ ̸= 0 if
and only if there is a family ⟨φαβ : α→ Z | α ≤ β < δ⟩ that is

• (2-coherent) for all α ≤ β ≤ γ < δ, we have

φβγ ↾ α− φαγ + φαβ =∗ 0, i.e., φαβ + φβγ =∗ φαγ ;

• (nontrivial) there is no sequence ⟨ψα : α→ Z | α < δ⟩ such
that, for all α ≤ β < δ, we have

φαβ =∗ ψβ ↾ α− ψα.

Unlike coherent Aronszajn trees, these are genuinely new
combinatorial objects. Note that a 2-coherent family is locally
trivial, i.e., given γ < δ, then the sequence ⟨−φαγ | α < γ⟩
witnesses that the initial segment ⟨φαβ | α ≤ β < γ⟩ is trivial.
Therefore, nontrivial 2-coherent families can be interpreted as
instances of set-theoretic incompactness.



A reframing
Coherence and triviality can be reframed in terms of oriented sums
of functions indexed by maximal faces of simplices whose vertices
are labeled by ordinals. For example, a 2-dimensional family
⟨φαβ | α ≤ β < κ⟩ is 2-coherent if the oriented sum on the
boundary of every 2-simplex vanishes mod finite:

A 2-d family is trivial if its 2-d
information reduces (mod finite)
to a 1-d family ⟨ψα | α < κ⟩.



Nonvanishing results

• (Mitchell) For all 1 ≤ n < ω, limn Aℵn [
⊕

ℵn
Z] ̸= 0.

It is a major open question whether this can be improved to
limn Aℵn ̸= 0 in ZFC. This is true for n = 1 due to the existence of
coherent Aronszajn trees.

• (Bergfalk–LH) If V = L, and 1 ≤ n < ω, then limn Aκ ̸= 0 for
all regular cardinals κ ≥ ℵn that are not weakly compact.

The proof of this goes through the following general stepping-up
lemma:

Lemma (Bergfalk–LH)

Suppose that λ < κ are regular uncountable cardinals,
limn Aλ ̸= 0, and there is a stationary S ⊆ κ ∩ cof(λ) such that
□(κ,S) +♢κ(S) holds. Then limn+1Aκ ̸= 0.



Vanishing results
1 (Todorcevic) The P-Ideal Dichotomy (and hence the Proper

Forcing Axiom) implies that lim1Aκ = 0 for all regular
κ ≥ ℵ2.

2 (Bergfalk–LH–J. Zhang) If λ is strongly compact, then
limn Aκ[H] = 0 for all 1 ≤ n < ω, all regular κ ≥ λ, and all
abelian groups H.

3 (Bergfalk–LH–J. Zhang) Relative to the consistency of a
supercompact cardinal, it is consistent that limn Aℵω+1 [H] = 0
for all 1 ≤ n < ω and all abelian groups H.

Question

What else can we say about the situation below ℵω? Is it
consistent, that, e.g., lim2Aℵ3 = 0?

This would be a higher-dimensional analogue of the result that,
consistently, there are no coherent ℵ2-Aronszajn trees. We expect
a positive answer, but it seems to require genuinely new ideas.



III. ωω-indexed systems



The system A[H]
Fix an abelian group H. Given a function f : ω → ω, let

I (f ) := {(k ,m) ∈ ω × ω | m ≤ f (k)}

and let Af [H] :=
⊕

I (f )H. Given f , g ∈ ωω, let f ≤ g iff
f (k) ≤ g(k) for all k < ω; in this case, let πfg : Ag [H] → Af [H] be
the projection map. This defines an inverse system

A[H] = ⟨Af , πfg | f , g ∈ ωω, f ≤ g⟩.

If H = Z, we omit it in the notation. The system A[H] and its
(derived) limits naturally arise in a variety of mathematical
contexts, and the vanishing of its derived limits is of considerable
interest.



lim1A

The first derived limit lim1A was extensively investigated by set
theorists in the late 1980s and early 1990s. We have a similar
characterization of its vanishing as with Aκ: lim

1A[H] ̸= 0 iff
there is a family of functions

⟨φf : I (f ) → H | f ∈ ωω⟩

that is

• (coherent) φf =∗ φg ↾ I (f ) for all f ≤ g in ωω; and

• (nontrivial) there is no function ψ : ω × ω → H such that
φf =∗ ψ ↾ I (f ) for all f ∈ ωω.



Early results

• (Mardešić–Prasolov, Simon, 1988) If the Continuum
Hypothesis holds, then lim1A ̸= 0.

• (Dow–Simon–Vaughan, 1989) If d = ℵ1, then lim1A ̸= 0.

• (Dow–Simon–Vaughan, 1989) If the Proper Forcing Axiom
holds, then lim1A = 0.

• (Todorcevic, 1989) If the Open Coloring Axiom holds, then
lim1A = 0.

• (Kamo, 1993) After adding ℵ2-many Cohen reals to any
model of ZFC, we have lim1A = 0.



Higher limits

There has recently been a resurgence of research into the derived
limits of A and related inverse systems, spurred especially by some
breakthroughs in the study of the higher derived limits. We first
note that the nonvanishing of such limits can be characterized in a
similar way to the systems Aκ. For example, lim2A[H] ̸= 0 iff
there is a family

⟨φfg : I (f ) → H | f , g ∈ ωω, f ≤ g⟩

that is

• (2-coherent) φgh ↾ I (f )− φfh + φfg =∗ 0 for all f ≤ g ≤ h in
ωω;

• (nontrivial) there is no family ⟨ψf : I (f ) → H | f ∈ ωω⟩ such
that φfg =∗ ψg ↾ I (f )− ψf for all f ≤ g in ωω.



Some recent results

• (Bergfalk, 2017) PFA implies lim2A ̸= 0.

• (Veličković–Vignati, 2023) For all n ≥ 1, it is consistent that
limn A ̸= 0.

• (Bergfalk–LH, 2021) After adding a weakly compact number
of Hechler reals to any model of set theory, limn A = 0 for all
n ≥ 1.

• (Bergfalk–Hrušák–LH, 2023) After adding ℶω-many Cohen
reals to any model of set theory, limn A = 0 for all n ≥ 1.

• (Bannister, 2023) In both of the two preceding results, we in
fact obtain limn A[H] = 0 for all n ≥ 1 and all abelian groups
H. This is optimal by the following result:

• (LH, 2023) If 2ℵ0 < ℵω, then there is n ≥ 1 and an abelian
group H such that limn A[H] ̸= 0.



IV. Some applications



Strong homology

Strong homology is a homology theory for topological spaces that
is strong shape invariant. It was developed by Lisica and Mardešić,
and was designed to reflect the properties of spaces with
pathological local behavior more reliably than, e.g., singular
homology.

Given a space X and a p < ω, let H̄p(X ) denote the pth strong
homology group of X .



Additivity

A desirable property for a homology theory to have is additivity:

Definition

A homology theory is additive on a class of topological spaces C if,
for every natural number p and every family {Xi | i ∈ J} such that
each Xi and

∐
J Xi are in C, we have⊕

J

Hp(Xi ) ∼= Hp(
∐
J

Xi )

via the map induced by the inclusions

Xi ↪→
∐
J

Xi .

Question: Is strong homology additive?



Infinite earring spaces

Let X n denote the n-dimensional infinite earring space, i.e., the
one-point compactification of the disjoint union of countably
infinitely many copies of the n-dimensional open unit ball.

X 1



Theorem (Mardešić-Prasolov, ‘88)

Suppose that 0 < p < n are natural numbers. Then⊕
N

H̄p(X
n) = H̄p(

∐
N

X n)

if and only if limn−p A = 0.

Consequently, if strong homology is additive, even on closed
subsets of Euclidean space, then limn A = 0 for all n ≥ 1. Getting
these derived limits to vanish ended up removing all obstacles to
additivity of strong homology on a robust class of spaces.

Theorem (Bannister–Bergfalk–Moore, 2023, Bannister, 2023)

After adding weakly compact-many Hechler reals or ℶω-many
Cohen reals to any model of ZFC, strong homology is additive on
the class of locally compact separable metric spaces.



A ZFC counterexample
Let Aω,ω1 be the inverse system defined analogously to A, but
indexed by functions f : ω → [ω1]

<ω. Let X n
ω1

denote the
one-point compactification of the disjoint union of ω1-many copies
of the n-dimensional open unit ball. This is an analogue of the
classical earring space, and its strong homology is related to Aω,ω1

in the same way that the strong homology of X n is related to A.

Theorem (Bergfalk–LH, 2023)

• lim1Aω,ω1 ̸= 0;

• for all n ≥ 2, ⊕
N

H̄n−1(X
n
ω1
) ̸= H̄n−1(

∐
N

X n
ω1
).

A more complicated ZFC counterexample to the additivity of
strong homology was found by Prasolov in 2005.



Condensed mathematics

Condensed mathematics is a framework, developed recently by
Dustin Clausen and Peter Scholze, for applying algebraic tools to
the study of algebraic structures carrying topologies. The basic
idea is to embed classical categories (e.g., topological abelian
groups, topological vector spaces, etc.) into richer categories with
nicer algebraic structures. Loosely speaking, objects in these richer
categories are contravariant functors from the category of compact
Hausdorff spaces to the classical category of interest satisfying
certain properties (sheaf conditions).

For example, given a topological abelian group A, one obtains an
associated condensed abelian group A : CHaus → Ab defined by
A(S) = Cont(S ,A) for all S ∈ CHaus.



Fully faithful embeddings

This describes an embedding of various classical categories into
their condensed analogues. When restricted to nice subcategories,
these embeddings are fully faithful, even at the level of derived
categories.

For example, the embedding of the category of locally compact
abelian groups into condensed abelian groups is fully faithful.

Question: To what extent is this embedding fully faithful on larger
subcategories?

Our results above yield some negative answers here. For example,
the fact that lim1Aω,ω1 ̸= 0 can be used to show that the
embedding of the category of pro-abelian groups into the category
of condensed abelian groups is not fully faithful (in particular, it is
not full).



Banach–Smith Duality

Definition

A Smith space is a complete, compactly generated locally convex
topological vector space X having a universal compact set K , i.e.,
for every compact T ⊆ X , there is r > 0 such that r · K ⊇ T .

Smith spaces are dual to Banach spaces:

• If Y is a Banach space, then C (Y ,R) with the compact-open
topology is a Smith space.

• If X is a Smith space, then C (X ,R) with the compact-open
topology is a Banach space.

This remains true for p-adic Banach and Smith spaces, replacing R
with Qp.



Condensed Banach–Smith Duality

Question: To what extent does this Banach–Smith duality persist
in the derived condensed setting?

The internal dual of a condensed Smith space (in the derived
category) is always a condensed Banach space. The reverse need
not be true.

However, if limn A[H] = 0 for all n > 0 and all abelian groups H,
then this duality holds between condensed separable p-adic Banach
spaces and condensed coseparable p-adic Smith spaces (in the
derived setting).

Interesting questions remain regarding the situation in the
archimedean setting.



The continuum

Thus, the assumption that limn A[H] = 0 for all n > 0 and all
abelian groups H is a natural and attractive one to make in the
context of condensed mathematics. Recall that this assumption
implies 2ℵ0 > ℵω, and is compatible with 2ℵ0 = ℵω+1.

This provides another example in a growing list of what can be
seen as combinatorial questions about the real numbers in which

• there is a “nice” answer to the question;

• the “nice” answer is known to be consistent;

• the “nice” answer entails a large continuum (i.e., 2ℵ0 > ℵω).

I would argue that this suggests that it would be worthwhile to
further investigate “canonical” models of ZFC or additional natural
axioms which would imply the “nice” answers to these questions
(and hence would also imply a large continuum).
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