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Abstract. We study relationships between various set theoretic compactness

principles, focusing on the interplay between the three families of combinatorial

objects or principles mentioned in the title. Specifically, we show the following.
(1) Strong forcing axioms, in general incompatible with the existence of in-

dexed squares, can be made compatible with weaker versions of indexed

squares.
(2) Indexed squares and indecomposable ultrafilters with suitable parame-

ters can coexist. This demonstrates that the amount of stationary reflec-

tion known to be implied by the existence of a uniform indecomposable
ultrafilter is optimal.

(3) The Proper Forcing Axiom implies that any cardinal carrying a uniform
indecomposable ultrafilter is either measurable or a supremum of count-

ably many measurable cardinals. Leveraging insights from the preceding

sections, we demonstrate that the conclusion cannot be improved.

1. Introduction

The study of compactness and incompactness phenomena in combinatorial set
theory has a long history. On the incompactness side, the square principles (□),
discovered by Jensen [Jen72] in his fine structural analysis of the constructible uni-
verse, have been used to settle many independent questions. Such principles make
it possible to generalize techniques and proofs available at the level of the first
uncountable cardinal to higher cardinals. For example, with square principles, the
“walks on ordinals” techniques discovered by Todorcevic [Tod87] are available at
higher cardinals, giving rise to many applications inside and outside of set theory
[Tod07]. On the compactness side, large cardinal axioms play an essential role in
settling independent questions, usually in an opposite way from how square princi-
ples decide them. They are also known to directly imply statements about objects
relatively low in the cumulative hierarchy; for example, Projective Determinacy
[MS89]. One particularly important class of strong compactness principles, whose
consistency can usually be established by performing iterated forcing over models
of large cardinals, is the class of forcing axioms. These can be thought of as gener-
alizations of the Baire Category Theorem in the following two aspects: they are 1)
applied to more general topological spaces and 2) designed to meet more require-
ments/dense sets. Two notable forcing axioms, the Proper Forcing Axiom (PFA),
introduced by Baumgartner [Bau84], and Martin’s Maximum (MM), introduced by
Foreman, Magidor and Shelah [FMS88], have found wide ranging applications both
inside and outside of set theory.
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In this paper, we study certain combinatorics of ultrafilters under strong forcing
axioms and use a weaker version of indexed squares to demonstrate the optimality
of the theorem. We need a few more definitions in order to state the main results.

Definition 1.1. An ultrafilter U over an infinite cardinal θ is said to be

(1) uniform if |X| = |θ| for every X ∈ U ;
(2) weakly normal if for any regressive f : θ → θ, there exists τ < θ such that

f−1[τ ] ∈ U .

Definition 1.2 (Keisler, Prikry [Pri68]). Let U be an ultrafilter over a set I, and
let µ be a infinite cardinal. U is said to be µ-decomposable if there exists a function
f : I → µ such that f−1[H] ̸∈ U for every H ∈ [µ]<µ. Otherwise, it is said to be
µ-indecomposable.

A ultrafilter on κ is indecomposable if it is ν-indecomposable for every ν ∈ [ℵ1, κ).
Hence, if we compare the definition with the ultrafilter given by a measurable
cardinal, it is weaker in that it is possibly not countably complete. This makes it
possible for non large cardinals to carry such ultrafilters.

Silver [Sil74] asked whether a strongly inaccessible κ carrying a uniform indecom-
posable ultrafilter is necessarily measurable. Sheard [She83] answered the question
negatively. We give another proof of this result (see Theorem 4.23). However,
such independent configurations cannot occur when certain structural constraints
are imposed on the ground model. For example, Donder, Jensen and Koppelberg
[DJK81] showed that if an inaccessible κ carries a µ-indecomposable ultrafilter for
some µ < κ, then there exists an inner model of a measurable cardinal. Hence,
in L, Silver’s question has a trivial positive answer. One can show, using Kunen’s
analysis [Kun70], in L[µ], the canonical inner model for one measurable cardinal,
Silver’s question also has a positive answer. It is likely such analysis generalizes to
other canonical inner models.

What is more surprising is that strong large cardinals give rise to the positive
answer of Silver’s question as well. More recently, Goldberg [Gol20] showed that any
cardinal κ carrying a uniform indecomposable ultrafilter must either be measurable
or a supremum of countably many measurable cardinals provided κ is above a
strongly compact cardinal. Our first main result shows that the same conclusion
follows from strong forcing axioms.

Theorem A. PFA implies that any cardinal carrying a uniform indecomposable
ultrafilter must be either measurable or a supremum of countably many measurable
cardinals.

Goldberg’s theorem and Theorem A add to the long list of combinatorial state-
ments that were first shown to hold above a strongly compact or supercompact
cardinal and later shown to also follow from strong forcing axioms. A popular
heuristic explaining this phenomenon is that strong forcing axioms assert that ω2

behaves in many ways like a strongly compact or supercompact cardinal. For ex-
ample, Solovay showed [Sol74] that, if κ is a strongly compact cardinal, then □(λ)
fails for every regular cardinal λ ≥ κ and the Singular Cardinals Hypothesis holds
above κ. Later, Todorcevic [Tod84] and Viale [Via06], respectively, showed the
same conclusions hold with κ = ω2 under PFA.

Next, in order to demonstrate that the conclusion we get in Theorem A is opti-
mal, we study the relationship between forcing axioms and certain indexed square
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principles. In what follows, ⊟ind(κ, θ) and □ind
− (κ, θ) are two natural weakenings of

the indexed square principles □ind(κ, θ) (see Definitions 3.1 and 3.6).

Theorem B. (1) MM implies that ⊟ind(κ, ω1) fails for all regular κ > ω1.
(2) For every pair θ < κ of infinite regular cardinals, there exists a θ+-directed

closed, (<κ)-distributive forcing that adds a □ind
− (κ, θ)-sequence. In partic-

ular, MM is compatible with □ind
− (κ, ω1) holding for all regular κ > ω1.

Our third main result concerns the co-existence of indexed square principles and
indecomposable ultrafilters. As a consequence, we show that the amount of sta-
tionary reflection implied by the existence of a uniform indecomposable ultrafilter
is optimal.

Theorem C. Relative to the existence of a measurable cardinal, it is consistent
that □ind(κ, θ) holds and κ carries a uniform ultrafilter that is µ-indecomposable
for every cardinal µ ∈ [θ+, κ).

As a corollary to Theorem B and the proof of Theorem C, we will show in The-
orem 5.9 that MM (and hence PFA) is compatible with the existence of a strongly
inaccessible cardinal that is not weakly compact but carries a uniform ultrafilter
that is µ-indecomposable for every cardinal µ ∈ [ℵ2, κ), thus demonstrating the
optimality of Theorem A.

1.1. Organization of this paper. In Section 2, we give a brief overview of an
important technique of Kunen [Kun78] and then use variations of this technique to
answer several questions in the literature regarding trees.

In Section 3, we introduce various indexed square principles and prove Theorem
B. We also answer a question from [HLH17] by showing that □(κ, θ) does not in
general imply the existence of a full □(κ, θ)-sequence.

In Section 4, we investigate the effect of indecomposable ultrafilters on a variety
of combinatorial principles, including the C-sequence number, trees with ascent
paths, strong colorings, and square principles. We prove Theorem C and apply
similar techniques to reproduce consistency results concerning partially strongly
compact cardinals.

In Section 5, we prove Theorem A and then use results from Sections 3 and 4 to
establish its optimality.

Finally in Section 6, we conclude with some open questions.

1.2. Notation and conventions. Reg(κ) stands for set of all infinite regular car-
dinals below κ. For a setX, we write [X]κ for the collection of all subsets ofX of size
κ. The collections [X]≤κ and [X]<κ are defined similarly. For a set of ordinals A,
we write ssup(A) := sup{α+ 1 | α ∈ A}, acc(A) := {α ∈ A | sup(A ∩ α) = α > 0},
nacc(A) := A \ acc(A), and acc+(A) := {α < ssup(A) | sup(A ∩ α) = α > 0}.

If a and b are sets of ordinals, then a < b is the assertion that α < β for all
α ∈ a and β ∈ b. If A is a set of ordinals, then we write (α, β) ∈ [A]2 to assert
that α, β ∈ A and α < β. If A is a collection of sets of ordinals, then we write
(a, b) ∈ [A]2 to assert that a, b ∈ A and a < b. If a and b are sets of ordinals, then
we write a ⊑ b to denote the assertion that b is an end-extension of a. If δ is an
ordinal and θ is an infinite cardinal, then Eδ

θ := {α < δ | cf(α) = θ}. Variations
such as Eδ

̸=θ, Eδ
>θ, etc. are defined in the obvious way.

For a tree (T,<T ) and an ordinal α, we denote by Tα the αth-level of the tree,
and we write T ↾ β for

⋃
α<β Tα. Also, for a pair of ordinals α < β and a node
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t ∈ Tα, we write t ↾ β for the unique s <T t belonging to Tβ . Given s ∈ T , we let
s↑ denote the cone of T above s, i.e., the tree with underlying set {t ∈ T | s ≤T t},
ordered by the restriction of <T .

2. Trees at strongly inaccessible cardinals

2.1. A brief survey of Kunen’s method. A central concern of this paper, and
of the study of combinatorial set theory more broadly, is the determination of any
causal implications that may exist among various compactness principles. One half
of this endeavor involves the task of separating certain compactness principles, i.e.,
proving that one does not imply another. In [Kun78], Kunen introduced a useful
technique for achieving such results that has been further deployed and refined
by a number of researchers in the intervening years. Since many of our results in
this paper both are directly motivated by this prior work and rely themselves on
variations of Kunen’s technique, we thought it appropriate to begin this paper with
a brief overview of technique and some of its relevant applications over the last
almost half century.

We will typically be interested in compactness principles that can hold at some
given cardinal κ. In light of this, we will often, e.g., let Φ denote the general
formulation of a compactness principle and let Φ(κ) denote an instance of Φ at
a particular cardinal κ. For example, Φ could be “the tree property”, in which
case Φ(κ) would be “the tree property at κ”. In broad strokes, Kunen’s technique
can now be summarized as follows. Suppose that Φ and Ψ are two compactness
principles, and one wants to prove that Φ(κ) does not imply Ψ(κ). In a typical
application, one begins in a model V of ZFC with a cardinal κ such that Φ(κ) holds
and is indestructible under forcing with Add(κ, 1), the forcing to add a Cohen

subset to κ. One then designs a two-step forcing iteration P ∗ Q̇ such that

(1) forcing with P introduces a counterexample to Ψ(κ);

(2) P ∗ Q̇ is forcing equivalent to Add(κ, 1);
(3) in V P, forcing with Q provably preserves counterexamples to Φ(κ), i.e., if

Φ(κ) fails in V P, then it continues to fail in V P∗Q̇.

Clause (1) implies that Ψ(κ) fails in V P, clause (2) and our initial assumption about

κ implies that Φ(κ) holds in V P∗Q̇, and then clause (3) implies that Φ(κ) holds in
V P. In particular, we have proven that Φ(κ) does not imply Ψ(κ), modulo the
consistency of our original assumptions.

Kunen originally developed this technique in [Kun78, §3] to prove that an inac-
cessible cardinal κ carrying a nontrivial, κ-complete, κ-saturated ideal need not be
measurable. To give a sketch of his proof, we need to recall the following definitions,
which will continue to be relevant throughout this section.

Definition 2.1. Let α be an ordinal. We say that a tree T ⊆ <α2 where the tree
order is the natural end-extension is

• normal if every for all γ < β < α, for every node t ∈ Tγ , there exists a
node s ∈ Tβ extending t;

• splitting if every node t ∈ T admits two immediate extensions in T ;
• homogeneous if for every s ∈ T , Ts := {s′ | s⌢s′ ∈ T} is equal to T .

Note that, if T ⊆ <α2 is a homogeneous tree, then α is necessary an additively
indecomposable ordinal. We will sometimes need the following slight abuse of
terminology.
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Definition 2.2. Suppose that α is indecomposable and T ⊆ <α+12 is a normal
tree. We say that T is homogeneous if, for every s ∈ T<α, Ts = T .

We can now sketch a proof of Kunen’s result as follows. Begin in a model V of
ZFC in which κ is a measurable cardinal that is indestructible under forcing with
Add(κ, 1). Then let P be the forcing consisting of all normal, splitting, homogeneous
strees of height α+1 for some indecomposable α < κ. P is ordered by end-extension,
i.e., if p, q ∈ P, then q ≤P p iff q ↾ ht(p) = p. One can then argue that P is (<κ)-
distributive and, in V P, the union of the P-generic filter is a homogeneous κ-Souslin
tree T . Thus, in V P, κ is an inacessible cardinal that is not weakly compact, let
alone measurable. In V , let Ṫ be the canonical P-name for this generic κ-Souslin
tree, considered as a forcing notion (the forcing order is the reverse of the tree

order). One then proves that the two-step iteration P ∗ Ṫ has a dense κ-directed
closed subset of cardinality κ and is therefore forcing equivalent to Add(κ, 1). By

assumption, κ is measurable in V P∗Ṫ and hence carries a nontrivial, κ-complete,
κ-saturated ideal in that model. Since Ṫ is forced to have the κ-cc in V P, the
following fact, whose proof we leave to the reader, will complete the proof.

Fact 2.3. Suppose that κ is a regular uncountable cardinal, Q is a κ-cc forcing
notion, and İ is a Q-name for a nontrivial, κ-complete, κ-saturated ideal over κ.
Then

J := {X ⊆ κ |⊩Q X̌ ∈ İ}
is a nontrivial, κ-complete, κ-saturated ideal in V .

A few years later, a variation on Kunen’s method was employed by Sheard [She83]
to prove that an inaccessible cardinal carrying a uniform indecomposable ultrafilter
need not be measurable, answering a question of Silver. Sheard forces with a slight
variation on Kunen’s forcing over the canonical inner model L[µ], where µ is a
measure over κ, to add a homogeneous κ-Souslin tree T . The desired model is
then L[T,U ] where U is a filter over κ in a certain further forcing extension that
becomes the desired indecomposable ultrafilter in L[T,U ].

Because of its relevance to the results of this paper, we end this subsection by
recalling one more recent application of Kunen’s method. In [HLH17], building on
work of Cummings, Foreman, and Magidor [CFM01], Hayut and Lambie-Hanson
investigated the interplay between □(κ, θ)-sequences and stationary reflection prin-
ciples. For instance, they showed that, if one starts wtih regular cardinals θ < κ
such that κ is weakly compact and indestructible under forcing with Add(κ, 1),
then one can force with a poset P to add a □ind(κ, θ)-sequence1 in such a way
that any of the forcings to add a thread through the generic □ind(κ, θ)-sequence
would resurrect the weak compactness of κ. They then leveraged this fact to show
that, in V P, every collection of fewer than θ-many stationary subsets of κ reflects
simultaneously. This is sharp, since □ind(κ, θ) implies the existence of a collection
of θ-many stationary subsets of κ that does not reflect simultaneously.

We shall see in Subsection 4.4 that forcing to add a □ind(κ, ω)-sequence over
an indestructibly measurable cardinal yields a model in which κ carries a uniform
indecomposable ultrafilter, thus providing an alternate proof of Sheard’s result
mentioned above.

1See Section 3 for the definition of □ind(κ, θ).
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2.2. Souslin tree and diamond at an inaccessible cardinal. Kunen proved
that if ♢(S) fails in V , where S is a stationary subset of a successor cardinal κ,
then it continues to fail in any further κ-cc forcing extension. The next result shows
that this is not true for κ inaccessible.

Note that the techniques in [She03] can be used to build a model where κ is
an inaccessible cardinal, ♢(S) fails for some stationary S ⊂ κ, and there exists a
κ-Souslin tree. To see this, we can start with L being the ground model with an
inaccessible non-weakly compact cardinal κ. Pick some non-reflecting stationary
S ⊂ κ such that whose complement Sc is fat. Let E ⊂ Sc be a stationary such
that ♢(E) and □(E) (in the sense of [Jen72, Theorem 6.1]) both hold. By [Jen72],
♢(E) and □(E) implies the existence of a κ-Souslin tree. Then the forcing in [She03]
giving rise to ¬♢(S) is Sc-closed. In particular, it preserves the stationarity of E,
♢(E) and □(E). So there exists a κ-Souslin tree in the forcing extension.

Proposition 2.4. Suppose that κ is a strongly inaccessible cardinal and there exists
a κ-Souslin tree. Then in some κ-cc forcing extension, ♢(S) holds for all stationary
S ⊆ κ.

Proof. By a standard fact (see [BR17, Lemma 2.4]), we may fix a normal κ-Souslin
tree T ⊆ <κκ such that, for every δ < κ and t ∈ Tδ, {t⌢⟨i⟩ | i < 2δ} ⊆ T . Clearly,
P := (T,⊇) is a κ-cc notion of forcing. Let G be P-generic over V , so that g :=

⋃
G

is a branch through (T,⊆).
In V , for each δ < κ, let ⟨xδi | i < 2δ⟩ enumerate P(δ). In V [G], let S ⊆ κ be a

stationary set, and we shall define a ♢(S)-sequence ⟨Aδ | δ ∈ S⟩, as follows. Given

δ ∈ S, let ϵ ∈ [δ, κ) be the least such that g ↾ ϵ ⊩ δ ∈ Ṡ, and then define

Aδ :=

{
xδg(ϵ), if g(ϵ) < 2δ;

∅, otherwise.

We verify that this works by running a standard density argument back in V .
Given t ∈ T , a P-name Ẋ for a subset of κ and a club C ⊆ κ (in V ), we need to

find an extension t′ of t and some δ ∈ C such that t′ ⊩ δ ∈ Ṡ and t′ ⊩ Ẋ ∩ δ = Ȧδ.
Let ⟨Mδ | δ < κ⟩ be an ∈-increasing continuous sequence of elementary submod-

els of H(κ+) containing {P, Ṡ, Ẋ}. Consider the club D := {δ ∈ C | Mδ ∩ κ = δ}.
Notice that an immediate consequence of the κ-cc-ness of P gives that for every
δ ∈ D, any node s ∈ Tδ is P-generic over Mδ. In addition, P is <κ-distributive,
thus, for every δ ∈ D, any node s ∈ Tδ decides Ẋ up to δ.

Now, since Ṡ is a P-name for a stationary subset of κ, we may pick some δ ∈ D
and an extension t∗ of t such that dom(t∗) ≥ δ and t∗ ⊩ δ ∈ Ṡ. Set ϵ := dom(t∗).
By possibly going to an initial segment of t∗, we may assume that ϵ is the least
ordinal ε ≥ δ such that t∗ ↾ ε ⊩ δ ∈ Ṡ.

Now pick i < 2δ such that t∗ ↾ δ ⊩ Ẋ ∩ δ = xδi . Then t′ := t∗⌢⟨i⟩ is an extension

of t in T such that ϵ is the least element of [δ, κ) to satisfy t′ ↾ ϵ ⊩ δ ∈ Ṡ, and it is

the case that t′ ⊩ Ẋ ∩ δ = xδg(ϵ) = Ȧδ. □

2.3. A non-coherent variation. Recall that, for a regular uncountable cardinal
κ, a C-sequence over κ is a sequence ⟨Cβ | β < κ⟩ such that, for all β < κ, Cβ is a
closed subset of β with sup(Cβ) = sup(β).

In [LHR21], a measure χ(κ) for a cardinal κ was introduced to describe how far it
is from being weakly compact. If κ is weakly compact, then χ(κ) := 0. Otherwise,
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χ(κ) denotes the least cardinal χ ≤ κ such that for every C-sequence ⟨Cβ | β < κ⟩,
there exist ∆ ∈ [κ]κ and b : κ→ [κ]χ such that ∆∩α ⊆

⋃
β∈b(α) Cβ for every α < κ.

The cardinal χ(κ) is referred to as the C-sequence number of κ. Question 6.4 of
the same paper asks whether a strongly inaccessible cardinal κ satisfying χ(κ) = 1
must admit a coherent κ-Aronszajn tree. As a coherent κ-Aronszajn tree cannot
contain a copy of the tree ≤ω2, the following theorem answers the above question
in the negative. We first recall the important notion of strategic closure.

Definition 2.5. Let P be a partial order (with maximum element 1P) and let β be
an ordinal.

(1) ⅁β(P) is the two-player game in which Players I and II alternate playing
conditions from P to attempt to construct a ≤P-decreasing sequence ⟨pα |
α < β⟩. Player I plays at odd stages, and Player II plays at even stages
(including limit stages). Player II is required to play p0 = 1P. If, during
the course of play, a limit ordinal α < β is reached such that ⟨pη | η < α⟩
has no lower bound in P, then Player I wins. Otherwise, Player II wins.

(2) P is said to be β-strategically closed if Player II has a winning strategy in
⅁β(P).

We will often speak about strategic closure of a poset P in which we have not
explicitly added a maximum element 1P. In this case, we implicitly add ∅ as a
maximum condition to P. Note that, if κ is a regular cardinal and P is κ-strategically
closed, then P is (<κ)-distributive.

Theorem 2.6. Suppose that κ is weakly compact. Then there is a <κ-distributive
forcing extension in which χ(κ) = 1 and every κ-Aronszajn tree contains a copy of
≤θ2 for every θ < κ.

Proof. We will construct a model with a Souslin tree T such that

• ⊩T κ is weakly compact,
• for every θ < κ and every x ∈ with ht(x) > θ, x↑ is θ+-closed.

Consider the forcing Pκ consisting of all conditions t such that:

• t is a normal, splitting, homogeneous tree of height α+ 1 for some α < κ,
• t is closed at singular levels: for every singular cardinal γ ≤ α, and every
<t-increasing sequence ⟨si | i < γ⟩ of nodes below level γ, there is a node s
in t such that si <t s for every i < γ.

The order is end-extension.

Claim 2.6.1. Pκ is κ-strategically closed.

Proof. The strategy for Player II is simply to continue all cofinal branches. □

Claim 2.6.2. Pκ adds a κ-Souslin tree.

Proof. Let Ṫκ be the canonical name for the union of the Pκ-generic filter, let p ∈ P,
and let Ẋ be a P-name such that p ⊩ “Ẋ is a maximal antichain in Ṫκ”. Let χ be
a sufficiently large regular cardinal, and find an elementary submodel M ≺ H(χ)
containing all relevant objects such that M ∩ κ = λ ∈ Reg(κ) and <λM ⊂ M .
Such λ exists since κ is Mahlo. Using the strategy for Player II, we can define a
decreasing sequence ⟨ti | i < λ⟩ from M ∩ Pκ that is (M,Pκ)-generic, i.e., it meets
every dense subset D ⊆ Pκ such that D ∈ M . Let t′ =

⋃
i<λ ti. By the genericity,

there exists a maximal antichain X ′ ⊂ t′ such that any condition extending t′ forces
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that Ẋ ∩λ = X ′. Then we just continue certain cofinal branches through t′ at level
λ to seal X ′. Namely, each branch has to pass through a node in X ′. We need
to maintain the normality as well as the homogeneity of the tree also but this is
easy since X ′ is a maximal antichain of t′. The reader is referred to [Kun78, Pages
70–71] for more details. The key point here is that since λ is a regular cardinal,
we are not obliged to complete all branches. As a result, the “antichain sealing” is
possible. □

Let Tκ be the κ-Souslin tree added by Pκ. Then, in V , Pκ ∗Tκ has the following
dense subset: {(t, b) ∈ Pκ × <κ2 | ht(t) = dom(b) + 1 and t ⊩ b ∈ Ṫκ}. This dense
set is <κ-closed of size κ. Hence it is forcing equivalent to Add(κ, 1).

The final model is obtained by performing an Easton-support iteration with
P = ⟨Rα | α < κ⟩ followed by Pκ, where Rα := Add(α, 1) for α Mahlo and trivial
otherwise. In the final model, we have a κ-Souslin tree such that forcing with it
restores the weak compactness of κ. Furthermore, this Souslin tree is closed at
singular levels. In particular, given θ < κ, for every x ∈ T with ht(x) > θ, x↑ is
θ+-closed. Since every κ-Aronszajn tree in V [P ∗ Pκ] obtains a cofinal branch in
some θ+-closed forcing extension, it follows that it must contain a copy of ≤θ2. □

2.4. A star variation. For a C-sequence ⟨Cβ | β < κ⟩, χ(C⃗) stands for least
cardinal χ ≤ κ such that there exist ∆ ∈ [κ]κ and b : κ → [κ]χ such that ∆ ∩ α ⊂⋃

β∈b(α) Cβ for every α < κ. By [LHR21, Lemma 4.12], if C⃗ witnesses □(κ), then

χ(C⃗) = sup(Reg(κ)). Here, we point out that this cannot be weakened to the
following principle □(κ,⊑∗).

Definition 2.7. Suppose that κ is a regular uncounctable cardinal.

(1) For C,D ∈ P(κ), we say that C ⊑∗ D if there is γ < sup(C) such that
D \ γ end-extends C \ γ.

(2) □(κ,⊑∗) is the assertion that there is a sequence C⃗ = ⟨Cα | α ∈ acc(κ)⟩
such that
(a) for all α ∈ acc(κ), Cα is a club in α;

(b) C⃗ is ⊑∗-coherent, i.e., for all β ∈ acc(κ) and all α ∈ acc(Cβ), we have
Cα ⊑∗ Cβ ;

(c) there is no club D in κ such that, for all α ∈ acc(D), we have Cα ⊑∗ D.

Proposition 2.8. Suppose that κ is a regular uncountable cardinal and □(κ) holds.

Then there is a □(κ,⊑∗)-sequence C⃗ with χ(C⃗) = 1.

Proof. Given two functions f and g, let f =∗ g denote the assertion that the set
{a ∈ dom(f) ∩ dom(g) | f(a) ̸= g(a)} is finite. By [Kön03, Theorem 3.9], □(κ)
yields a sequence ⟨fβ : β → 2 | β < κ⟩ such that:

• for all α < β < κ, fα =∗ fβ ;
• there exists no f : κ→ 2 such that, for all α < κ, fα =∗ f .

Now, for every β ∈ acc(κ), let Cβ := acc(β)∪ {ξ + 1 | fβ(ξ) = 1}. Then C⃗ := ⟨Cβ |
β < κ⟩ is a ⊑∗-coherent C-sequence. Moreover, χ(C⃗) = 1, as witnessed by ∆ =
acc(κ). However, there is no club D ⊆ κ such that Cβ ⊑∗ D for all β ∈ acc(D). To
see this, suppose for the sake of contradiction that D is such a club.

Using the pressing-down lemma, fix a stationary set S ⊆ acc(D) and an ordinal
γ < κ such that, for all α ∈ S, we have Cα \ γ = D ∩ [γ, α). Now define a function
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f : κ → 2 by letting f ↾ γ = fγ and, for all ξ ∈ [γ, κ), setting f(ξ) = 1 if and only
if ξ + 1 ∈ D.

We will reach a contradiction by showing that fα =∗ f for all α < κ. To this end,
fix an α < κ. Note first that fα ↾γ =∗ fγ = f ↾γ. Next, fix β ∈ S \α, and note that
fα↾[γ, α) =∗ fβ↾[γ, α). Moreover, by the choice of S, we have Cβ∩[γ, α) = D∩[γ, α),
so, by the definition of Cβ and of f , we have fβ ↾ [γ, α) = f ↾ [γ, α). Altogether,
this yields fα =∗ f and the desired contradiction. □

3. Forcing axioms and indexed squares

The principle □ind(κ, θ) was introduced in [LH17], and it is the strengthening of
the following principle obtained by requiring that Γ be the whole of acc(κ).

Definition 3.1 ([LHR23, §4]). ⊟ind(κ, θ) asserts the existence of a matrix

C⃗ = ⟨Cα,i | α ∈ Γ, i(α) ≤ i < θ⟩
satisfying the following requirements:

(1) (Eκ
̸=θ ∩ acc(κ)) ⊆ Γ ⊆ acc(κ);

(2) for all α ∈ Γ, we have i(α) < θ, and ⟨Cα,i | i(α) ≤ i < θ⟩ is a ⊆-increasing
sequence of clubs in α, with Γ ∩ α =

⋃
i(α)≤i<θ acc(Cα,i);

(3) C⃗ is coherent, i.e., for all α ∈ Γ, i(α) ≤ i < θ, and ᾱ ∈ acc(Cα,i), we have
i(ᾱ) ≤ i and Cᾱ,i = Cα,i ∩ ᾱ;

(4) C⃗ is nontrivial, i.e., for every club D in κ, there exists α ∈ acc(D)∩Γ such
that, for all i < θ, D ∩ α ̸= Cα,i.

Remark 3.2. □ind(κ, θ) =⇒ ⊟ind(κ, θ). The two coincide whenever θ = ω or
assuming that θ ∈ Reg(κ) and every stationary subset of Eκ

θ reflects (see [LHR23,
Theorems 4.6 and Corollary 4.7])

It is well known that Martin’s Maximum (MM) is compatible with □ind(κ, ω2)
holding for all regular κ ≥ ω2. Related to this is a result of Lücke [Lüc17, Theo-
rem 5.8] implying that MM is compatible with the existence of an ℵ3-Souslin tree
admitting an ℵ1-ascent path.

It is known that certain fragments of PFA or MM imply ¬□(κ, ω1) for a regular
κ > ω2 (see for example [Str11] and [TPW17]). However, these fragments are
not compatible with CH. For example, [Str11] uses MRP + MA and [TPW17] uses
SSR + ¬CH.

Here, we shall show that ⊟ind(κ, ω1) is ruled out by the Semi-Stationary Reflec-
tion Principle (SSR), a 2-cardinal stationary reflection principle [She98, Chapter
XIII, 1.7] that follows from MM [FMS88] and Rado’s Conjecture (RC) [Doe13] (see
also [Zha20, Theorem 5.2]), but is also compatible with CH. This corrects a claim
made in [LHR23, Remark 4.12] that MM is compatible with ⊟ind(κ, ω1). Whether
SSR is compatible with □(κ, ω1) for κ > ω2 remains an open question (see Section 6
below).

Definition 3.3 ([SV15]). For countable subsets x, y of a regular cardinal λ ≥ ω2,2

we say x ⊑∗ y iff

(1) x ∩ ω1 = y ∩ ω1,
(2) ssup(x) = ssup(y),

2The definition here is unrelated to that of Definition 2.7.
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(3) ssup(x ∩ γ) = ssup(y ∩ γ) for any γ ∈ x ∩ Eλ
ω1

.

We will use the following equivalent formulation as the definition of SSR as
proved in [SV15, Lemma 2.2].

Definition 3.4. SSR asserts that for any λ ≥ ω2 and any stationary S ⊆ [X]ℵ0

that is closed upwards under ⊑∗, there exists W ∈ [λ]ℵ1 with W ⊇ ω1 such that
S ∩ [W ]ℵ0 is stationary in [W ]ℵ0 .

Theorem 3.5. SSR implies that ⊟ind(κ, ω1) fails for every regular κ ≥ ω2.

Proof. The proof is similar to that of [SV15, Theorem 2.1]. Let κ ≥ ω2 be regular.

Suppose for the sake of contradiction that C⃗ = ⟨Cα,i | α ∈ Γ, i(α) ≤ i < ω1⟩ is an
⊟ind(κ, ω1)-sequence.

We shall soon show that the following set is stationary in [κ]ℵ0 . Define S ⊂ [κ]ℵ0

containing elements x such that

(1) sup(x) ̸∈ x,
(2) x ∩ ω1 ∈ ω1,
(3) i(sup(x)) ≤ x ∩ ω1,
(4) ∃ξ < sup(x), x ∩ Csup(x),x∩ω1

⊂ ξ & ∀β ∈ Csup(x),x∩ω1
\ξ, cf(min(x\β)) =

ω1.

Let us note that by design, S is closed upwards under ⊑∗. To see this, suppose
that x ∈ S and y is such that x ⊑∗ y. The only nontrivial point to check is (5). Let
D = Csup(x),x∩ω1

. First we check that sup(y ∩ D) = sup(x ∩ D). If not, then we
can take some γ ∈ y ∩D \ (sup(x ∩D) + 1). By the fact that x ∈ S, we know that
cf(γ∗) = ω1 where γ∗ = min(x\γ). As γ ̸∈ x, γ∗ > γ. However, ssup(x ∩ γ∗) ≤ γ
but ssup(y∩ γ∗) ≥ γ+ 1, contradicting the fact that x ⊑∗ y. Let ξ < sup(x) bound
x ∩ D and y ∩ D. For any β ∈ D\(ξ + 1), min y\β =def βy ≤ βx =def minx\β.
To see that βy = βx, suppose for the sake of contradiction that βy < βx. Then
ssup(x∩βx) ≤ β ≤ βy and ssup(y∩βx) ≥ βy +1, contradicting the fact that x ⊑∗ y.

Thus, if SSR were to hold, we could pick W ∈ [κ]ℵ1 with W ⊇ ω1 such that
S ∩ [W ]ℵ0 is stationary in [W ]ℵ0 . Let γ := sup(W ). There are two options here,
each leading to a contradiction:

▶ If cf(γ) = ω, then γ ∈ Γ. Let j := i(γ), and let y be a countable cofinal
subset of Cγ,j , and note that {x ∈ [W ]ℵ0 | j ∪ y ⊆ x} is a club in [W ]ℵ0

disjoint from S, contradicting the fact that S ∩ [W ]ℵ0 is stationary.
▶ If cf(γ) = ω1, then let ⟨βi | i < ω1⟩ be an increasing enumeration of a club

in γ. We can assume that cf(βi) = ω for all i < ω1. Fix δ ∈ Γ\γ, and define
a function g : ω1 → ω1 by letting, for all i < ω1, g(i) be the least j < ω1

such that i(δ) ≤ j and βi ∈ acc(Cδ,j). Let D := {j ∈ acc(ω1) | g[j] ⊆ j},
so D is a club in ω1. Moreover, for all j ∈ D, we have βi ∈ acc(Cδ,j) for all
i < j. It follows that βj ∈ acc(Cδ,j), so, by coherence, we have i(βj) ≤ j
and βi ∈ acc(Cβj ,j) for all i < j. Let E be the set of x ∈ [W ]ℵ0 such that

– x ∩ ω1 ∈ D;
– sup(x) = βx∩ω1

; and
– x ∩ Csup(x),x∩ω1

is unbounded in sup(x).

Then E is disjoint from S, and, by the choice of D, E is a club in [W ]ℵ0 ,
contradicting the fact that S ∩ [W ]ℵ0 is stationary.
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We now turn to showing that S is indeed a stationary subset of [κ]ℵ0 . To this
end, let f : [κ]<ω → κ be given. Our goal is to find x ∈ S closed under f . The
proof is essentially the same as that in [SV15], so we just include a brief outline.

For each j < ω1, consider the following game Gf,j : Players I and II alternate
choosing ordinals < λ, with Player I starting the game. A run of a game takes the
following form: at stage n, Player I chooses αn, then Player II chooses βn, then
Player I chooses γn > βn, αn of cofinality ω1. Player I wins iff, letting x := clf ({γn |
n < ω} ∪ j), we have x ∩

⋃
m∈ω[αm, γm) = ∅ and x ∩ ω1 = j. Since this is an open

game for Player II, it is determined. An argument as in [SV15, Lemma 2.3] shows
that for club many j < ω1, Player I has a winning strategy σj in the game Gf,j .
Fix a large enough j < ω1 such that Player I has a winning strategy in the game
Gf,j and such that, for stationarily many β ∈ Eκ

ω, i(β) ≤ j. Let C ⊂ κ be a
club subset that is closed under f and the winning strategy of Player I σj . Find
some M ≺ H(κ+) containing all relevant objects with β := sup(M ∩ κ) in Eκ

ω and
i(β) ≤ j. The rest of the proof is the same as [SV15, Theorem 2.1, Claim 1], with
Cβ,j playing the role of the “Cδ” in that proof. □

Proof of Theorem B(1). By Theorem 3.5 and the fact that MM implies SSR. □

3.1. Another weakening. We now show that MM is compatible with a different
weakening of □ind(κ, ω1), which we denote □ind

− (κ, θ). This will later be used to
provide a sense in which Theorem A is sharp. We begin with the definition of this
weakening.

Definition 3.6. Let θ < κ be a pair of infinite regular cardinals. The principle
□ind

− (κ, θ) asserts the existence of a matrix

C⃗ = ⟨Cα,i | α ∈ acc(κ), i(α) ≤ i < θ⟩

satisfying the following requirements:

(1) for all α ∈ acc(κ), we have i(α) < θ, and ⟨Cα,i | i(α) ≤ i < θ⟩ is a
⊆-increasing sequence of clubs in α, with acc(α) =

⋃
i(α)≤i<θ acc(Cα,i);

(2) for all α ∈ acc(κ), i(α) ≤ i < θ, and ᾱ ∈ acc(Cα,i) ∩Eκ
≥θ, we have i(ᾱ) ≤ i

and Cᾱ,i = Cα,i ∩ ᾱ;
(3) for all (ᾱ, α) ∈ [acc(κ)]2 and all sufficiently large i < θ, we have Cᾱ,i =

Cα,i ∩ ᾱ;
(4) for every club D in κ, there exists α ∈ acc(D)∩Eκ

≥θ such that, for all i < θ,
D ∩ α ̸= Cα,i.

Loosely speaking, the difference between ⊟ind(κ, θ) and □ind
− (κ, θ) is that, in a

matrix C⃗ witnessing the latter, if (ᾱ, α) ∈ [acc(κ)]2 with cf(ᾱ) < θ, then we do
not require coherence of Cᾱ,i and Cα,i for all i < θ such that ᾱ ∈ acc(Cα,i), but
only for all sufficiently large i < θ. Note that □ind

− (κ, ω) is equivalent to □ind(κ, ω).
Hence, for notational convenience, we will focus in this section on the case in which
θ > ω.

As should be expected of a square principle, □ind
− (κ, θ) is incompatible with the

weak compactness of κ.

Definition 3.7 ([LHR18]). A coloring c : [κ]2 → θ witnesses U(κ, 2, θ, 2) if for any
H ∈ [κ]κ, c“[H]2 is cofinal in θ.
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Proposition 3.8. Suppose that θ < κ is a pair of infinite regular cardinals and
□ind

− (κ, θ) holds. Then there exists an Eκ
≥θ-closed subadditive witness to U(κ, 2, θ, 2).

In particular, κ is not weakly compact.

Proof. Suppose C⃗ = ⟨Cα,i | α ∈ acc(κ), i(α) ≤ i < θ⟩ is a witness to □ind
− (κ, θ).

Using Clause (3) of Definition 3.6, we define a coloring c : [κ]2 → θ via

c(α, β) := min{j < θ | j ≥ max{i(ω·α), i(ω·β)} & ∀i ∈ [j, θ) [Cω·α,i = Cω·β,i∩ω·α]}.

Claim 3.8.1. c witnesses U(κ, 2, θ, 2).

Proof. We need to show that for every H ∈ [κ]κ, c“[H]2 is cofinal in θ. Towards
a contradiction, suppose H ∈ [κ]κ and j < θ are such that c“[H]2 ⊆ j. Then
D :=

⋃
α∈H Cω·α,j is a club in κ. Using Clause (4) of Definition 3.6, fix α ∈

acc(D) ∩ Eκ
≥θ such that, for all i < θ, D ∩ α ̸= Cα,i. Set β := min(H \ (α + 1)).

Then D ∩ α = Cω·β,j ∩ α. So α ∈ acc(Cω·β,j) ∩ Eκ
≥θ, and then Clause (2) implies

that Cα,j = Cω·β,j ∩ α = D ∩ α. This is a contradiction. □

It thus immediately follows that κ is not weakly compact.

Claim 3.8.2. c is Eκ
≥θ-closed.

Proof. Suppose that α < β < κ and j < θ, are such that sup{ε < α | c(ε, β) ≤
j} = α; we need to show that if α ∈ Eκ

≥θ, then c(α, β) ≤ j.

By our assumption, ω · ε ∈ acc(Cω·β,j) for cofinally many ε < α, and hence
ω · α ∈ acc(Cω·β,j). Thus, if α ∈ Eκ

≥θ, then ω · α ∈ acc(Cω·β,j) ∩ Eκ
≥θ, and then

Clause (2) of Definition 3.6 implies that c(α, β) ≤ j. □

Claim 3.8.3. c is subadditive.

Proof. Let α < β < γ < κ; we need to show that c(α, γ) ≤ max{c(α, β), c(β, γ)}
and c(α, β) ≤ max{c(α, γ), c(β, γ)}.

▶ Set j := max{c(α, β), c(β, γ)}. Then for every i ∈ [j, θ), Cω·α,i = Cω·β,i ∩ω ·α
and Cω·β,i = Cω·γ,i∩ω ·β, so that Cω·α,i = Cω·γ,i∩ω ·α. Consequently, c(α, γ) ≤ j.

▶ Set j := max{c(α, γ), c(β, γ)}. Then for every i ∈ [j, θ), Cα,i = Cω·γ,i ∩ ω · α
and Cβ,i = Cω·γ,i∩ω·β, so that Cω·α,i = Cω·β,i∩ω·α. Consequently, c(α, β) ≤ j. □

This completes the proof. □

We now turn to proving that MM is compatible with □ind
− (κ, ω1). Hereafter,

we roughly follow Section 7 of [LH17]. Fix for now a pair of uncountable regular
cardinals θ < κ. We first introduce a forcing to add a witness to □ind

− (κ, θ).

Definition 3.9. Define P−(κ, θ) to be the forcing poset consisting of all condi-
tions p = ⟨Cp

α,i | α ∈ acc(γp + 1), i(α)p ≤ i < θ⟩ satisfying the following four
requirements:

(1) γp ∈ acc(κ);
(2) for all α ∈ acc(γp + 1), we have i(α)p < θ, and ⟨Cp

α,i | i(α)p ≤ i < θ⟩ is a

⊆-increasing sequence of clubs in α, with acc(α) =
⋃

i(α)≤i<θ acc(Cp
α,i);

(3) for all α ∈ Γp, i(α)p ≤ i < θ, and ᾱ ∈ acc(Cp
α,i) ∩ Eκ

≥θ, we have i(ᾱ)p ≤ i

and Cp
ᾱ,i = Cp

α,i ∩ ᾱ;

(4) for all (ᾱ, α) ∈ [acc(γp + 1)]2 and all sufficiently large i < θ, we have
Cp

ᾱ,i = Cp
α,i ∩ ᾱ.

P−(κ, θ) is ordered by end-extension.
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Lemma 3.10. P−(κ, θ) is θ+-directed closed.

Proof. As P−(κ, θ) is tree-like, it suffices to verify that it is θ+-closed. Suppose
that we are given a strictly decreasing sequence p⃗ = ⟨pσ | σ < τ⟩ of conditions in
P−(κ, θ), with τ ∈ acc(θ+).

Set γ := sup{γpσ | σ < τ}. We will define a lower bound q for p⃗ with γq = γ. For
all α ∈ acc(γ), let σ < τ be least such that α ∈ acc(γpσ ), and set i(α)q = i(α)pσ

and, for all i(α)q ≤ i < θ, set Cq
α,i = Cpσ

α,i. To complete the definition of q, it

suffices to specify i(γ)q and ⟨Cq
γ,i | i(γ)q ≤ i < θ⟩.

Let ν := cf(τ) = cf(γ), so ν ≤ θ, and let ⟨βη | η < ν⟩ be an increasing enumera-
tion of a club D in γ such that βη ∈ acc(γ) ∩ Eτ

<ν for all η < ν (such a club exists
because cf(γ) ≤ θ and γ is a limit of limit ordinals). Suppose first that ν < θ. In
this case, we can find a sufficiently large i∗ < θ such that, for all (η, ξ) ∈ [ν]2 and all
i∗ ≤ i < θ, we have Cq

βη,i
= Cq

βξ,i
∩ βξ. Then set i(γ)q := i∗ and, for all i∗ ≤ i < θ,

set Cq
γ,i :=

⋃
η<ν C

q
βη,i

. It is routine to verify that q thus defined is as desired.

Suppose now that ν = θ, and let ⟨iη | η < θ⟩ be a continuous, strictly increasing
sequence of ordinals below θ such that i0 = 0 and, for all ξ < ξ′ < η < θ and all
iη ≤ i < θ, we have i(βξ)q, i(βξ′)

q < iη and Cq
βξ,i

= C1
βξ′ ,i

∩ βξ. Set i(γ)q := 0. For

all i < θ, let η < θ be such that iη ≤ i < iη+1, and set Cq
γ,i := D ∪

⋃
ξ<η C

q
βξ,i

.

Notice that our choice of iη ensures that, for all ξ < η, we have Cq
βξ,i

= Cq
γ,i ∩ βξ.

It is again readily verified that q is as desired. □

Lemma 3.11. P−(κ, θ) is κ-strategically closed.

Proof. We describe a winning strategy for Player II in ⅁κ(P−(κ, θ)). Suppose 0 <
ξ < κ is an even ordinal and ⟨pη | η < ξ⟩ is a partial play of ⅁κ(P−(κ, θ)). Assume
we have arranged inductively that, for all even nonzero ordinals η < ξ, we have
γpη < γpξ , i(γpη )pη = i(γpξ) = 0, and, for all i < θ, C

pη

γpη ,i = C
pξ

γpξ ,i
∩ γpη .

Suppose first that ξ = η + 2 for some even η < κ. We shall define a condition
pξ = ⟨Cpξ

α,i | α ∈ acc(γpξ + 1), i(α)pξ ≤ i < θ⟩ extending pη+1. First, set γpξ :=

γpη+1 +ω and i(γpξ)pξ = 0. To complete the definition of pξ, we only need to define

⟨Cpξ

γpξ ,i
| i < θ⟩.

First, fix i∗ < θ such that, for all i∗ ≤ i < θ, we have either γpη = γpη+1 or
C

pη

γpη ,i = C
pη+1

γpη+1 ,i
∩ γpη . Now, for all i < θ, define C

pξ

γpξ ,i
as follows.

▶ If i < i∗, then let

C
pξ

γpξ ,i
:= C

pη

γpη ,i ∪ {γpη} ∪ {γpη+1 + n | n < ω}.

▶ If i ≥ i∗, then let

C
pξ

γpξ ,i
:= C

pη+1

γpη+1 ,i
∪ {γpη+1 + n | n < ω}.

It is easily verified that pξ forms a legitimate condition extending pη+1 satisfying
the inductive hypothesis.

Next, suppose that ξ is a limit ordinal. Let γpξ := supη<ξ γ
pη and i(γpξ)pξ = 0.

To complete the definition of pξ, it remains to specify

⟨Cpξ

γpξ ,i
| i < θ⟩.

By our inductive hypothesis, we know that ⟨γpη | η < ξ, η is even⟩ enumerates a

club in γpξ and, for all i < θ and all even η < η′ < ξ, we have C
pη

γpη ,i = C
pη′

γ
p
η′ ,i

∩γpη .



14 CHRIS LAMBIE-HANSON, ASSAF RINOT, AND JING ZHANG

Therefore, for each i < θ, we can set

C
pξ

γpξ ,i
:=

⋃
{Cpη

γpη ,i | η < ξ, η is even}.

It easy to see that pξ is a lower bound for ⟨pη | η < ξ⟩ and maintains the inductive
hypothesis. This completes the description of the winning strategy for Player II. □

So, forcing with P−(κ, θ) preserves all cardinalities and cofinalities ≤ κ. If, in
addition, κ<κ = κ, then |P−(κ, θ)| = κ and hence preserves all cardinalities and
cofinalities. The proof of Lemma 3.11 makes it clear that, for every α < κ, the set
Dα := {p ∈ P−(κ, θ) | γp ≥ α} is dense in P−(κ, θ)

Lemma 3.12. Let G be P−(κ, θ)-generic over V . Set C⃗ :=
⋃
G = ⟨Cα,i | α ∈

acc(κ), i(α) ≤ i < θ⟩. Then C⃗ is an □ind
− (κ, θ)-sequence.

Proof. The only nontrivial thing to verify is that C⃗ satisfies Clause (4) of Defini-
tion 3.6.

Claim 3.12.1. Suppose that for every i∗ < θ, the set {α ∈ Eκ
≥θ | i(α) > i∗} is

stationary. Then for every club D in κ, there exists α ∈ acc(D) ∩ Eκ
≥θ such that,

for all i < θ, D ∩ α ̸= Cα,i.

Proof. Suppose that there is a club D ⊆ κ such that, for all α ∈ acc(D)∩Eκ
≥θ, there

exists iα < θ for which D∩α = Cα,iα . Find a stationary set S ⊆ acc(D)∩Eκ
≥θ and

some i∗ < θ such that iα = i∗ for all α ∈ S. Then it easily follows that for every
α ∈ acc(D) ∩ Eκ

≥θ, we have D ∩ α = Cα,i∗ . □

It thus suffices to verify that the hypothesis of Claim 3.12.1 holds. Work back in
V . Fix p ∈ G, a P−(κ, θ)-name Ḋ such that p ⊩ “Ḋ is club in κ”, and an ordinal
i∗ < θ. Build a strictly decreasing sequence p⃗ = ⟨pη | η < θ⟩ of conditions in
P−(κ, θ) below p together with an increasing sequence of ordinals ⟨δη | η < θ⟩ such
that, for all η < θ, we have

• γpη < δη < γpη+1 ; and

• pη+1 ⊩ δ̌η ∈ Ḋ.

Let γ := sup{δη | η < θ} = sup{γpη | η < θ}. By Lemma 3.10, we can find a
lower bound q0 for p⃗ such that γq0 = γ. The condition constructed in the proof of
that lemma satisfies i(γ)q0 = 0. However, if we alter q0 to a condition q simply by
setting i(γ)q = i∗ + 1 and leaving Cq

γ,i = Cq0
γ,i for all i∗ ≤ i < θ, then q is still a

lower bound for p⃗. Moreover,

q ⊩ “γ̌ ∈ acc(D) ∩ Eκ
≥θ and ˙i(α) > i∗”.

By genericity, the conclusion follows. □

Remark 3.13. The above forcing introduces a non-reflecting stationary subset of
Eκ

θ , e.g., the set of all α ∈ Eκ
θ such that i(α) = 0 and otp(Cα,0) = θ.

We now arrive at the proof of Theorem B(2):

Corollary 3.14. If MM holds, then for every regular uncountable cardinal κ = κ<κ,
in some cofinality-preserving forcing extension, MM and □ind

− (κ, ω1) both hold.

Proof. By [Lar00, Theorem 4.3], MM is preserved by any ω2-directed closed forcing.
□
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Remark 3.15. Comparing Corollary 3.14 and Proposition 3.8 with Theorem 3.5 and
[LHR23, Theorem 4.4], we see that the pump-up feature of [LHR21, Corollary 5.20]
is not available for the class of subadditive colorings.

3.2. Another interpolant. In [HLH17], Hayut and Lambie-Hanson introduced
the following definition as part of their investigation of □(κ, θ)-sequences and sta-
tionary reflection principles.

Definition 3.16 ([HLH17, Definition 2.17]). A □(κ, θ)-sequence ⟨Cα | α < κ⟩ is
said to be full if the following set is cofinal in κ:

Γ := {γ < κ | {α < κ | γ /∈
⋃

C∈Cα

acc(C)} is nonstationary in κ}.

Remark 3.17. □ind(κ, θ) =⇒ ∃ full □(κ, θ)-sequence =⇒ □(κ, θ).

Question 3 of [HLH17] asks whether □(κ, θ) may always be witnessed by a full
□(κ, θ)-sequence. A negative answer follows from a result of Susice [Sus19] together
with the following observation.

Proposition 3.18. Suppose that there exists a full □(κ, θ)-sequence. Then there
exists a κ-Aronszajn tree T with a θ-ascending path.3

Proof. Suppose C⃗ = ⟨Cα | α < κ⟩ is a full □(κ, θ)-sequence. For each α < κ,
let ⟨Ci

α | i < θ⟩ be some enumeration of Cα, with repetitions if necessary. For

each i < θ, let T i be the tree T (ρ0(C⃗i)) for the C-sequence C⃗i := ⟨Ci
α | α < κ⟩

(see [Tod07, §6.1] for the definition of T (ρ0(C⃗i))). As each C⃗i is in particular
a transversal for a □(κ,<κ)-sequence, T i is a κ-Aronszajn tree.4 Consequently,

T :=
⋃

i<θ T
i is a κ-Aronszajn tree. A moment’s reflection makes it clear that if C⃗

is full, then T admits a θ-ascending path. □

In [Sus19], Susice proved that □ω1,2 is consistent with the assertion that all ℵ2-
Aronszajn trees are special. As □ω1,2 implies □(ω2, ω), it suffices to prove that if
all ℵ2-Aronszajn trees are special, then there are no full □(ω2, ω)-sequences. But
this follows from Laver’s theorem that an ω2-Aronszajn tree with an ω-ascending
path is nonspecial (see [Lüc17, Corollary 1.7]).

It is worth noting that ♢(ω1) holds in Susice’s model, assuming it held in the
ground model. The reason is that the forcing he used is countably closed and
countably closed forcings are known to preserve ♢(ω1). It was proved in [LHR19]
that ♢(ω1) + □ω1

gives an ℵ2-Souslin tree, and this model shows that □ω1
cannot

be relaxed to □ω1,2.

4. The impact of indecomposable ultrafilters

For the convenience of stating results, let us define the following.

Definition 4.1. For θ < κ, an ultrafilter U is said to be [θ, κ)-indecomposable if it
is µ-indecomposable for all θ ∈ [µ, κ).

3See Definition 4.9.
4This is a standard argument. The proof that it is a κ-tree is similar to that of [LHR18,

Claim 4.11.3]. The proof that it has no κ-branch is as that of the forward implication of [Tod07,

Theorem 6.3.5].
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Note that this is equivalent to the assertion that, for every µ < κ and every
function f : κ → µ, there is H ∈ [µ]<θ such that f−1[H] ∈ U . Recall that an
ultrafilter U over a cardinal κ > ℵ1 is indecomposable if it is uniform and [ℵ1, κ)-
indecomposable.

Note that an ultrafilter U is ℵ0-indecomposable if and only if it is ℵ1-complete.
Also, if U is a nonprincipal ultrafilter containing a set of cardinality µ, then U is
µ-decomposable. We remark that, by a result of Kunen and Prikry [KP71], if µ is
a regular cardinal and U is µ-indecomposable, then it is also µ+-indecomposable.
As a result, if κ carries a uniform indecomposable ultrafilter, then κ cannot be the
successor of a regular cardinal.

Fact 4.2 (Silver, [Sil74, Lemma 2]). Suppose that θ is regular and U is a uniform
[θ, κ)-indecomposable ultrafilter over a cardinal λ with λ ≥ κ > 2θ that is not θ-
complete. Then there exist a µ < θ and a map φ : λ → µ that is a finest partition
associated to U . That is:

• for all n < µ, φ−1[n] /∈ U ;
• for any f : λ → γ with γ < κ, there exists a function g : µ → γ such that
f = g ◦ φ (mod U).

With a [θ, κ)-indecomposable ultrafilter U over κ and a finest partition φ : κ→
µ associated with it, we can let D := φ∗(U) be the Rudin-Keisler projection of
U via φ. Then D is a non-principal uniform ultrafilter on µ defined by putting
X ⊆ µ in D if and only if φ−1[X] ∈ U . The following theorem is due to Silver,
whose proof is implicit in [Sil74]. A countably complete version appeared as [Gol22,
Theorem 7.5.26]. We include a proof of the following for completeness.

Theorem 4.3 (Silver). Suppose U is an ultrafilter satisfying the hypothesis of
Fact 4.2. Let φ and D be given as in the preceding discussion. The ultrapower
embedding jU : V → MU can be factored as k ◦ jD where jD : V → MD and
k : MD → MU such that k is jD(η)-MD-complete for all η < κ, namely, for any
σ ∈MD such that MD |= |σ| < jD(η), we have k(σ) = k“σ.

Proof. Recall that elements of MD and MU are of the form [f ]D and [g]U , where
f and g are functions with domains µ and λ, respectively. Let k : MD → MU

be defined by setting k([f ]D) = [f̄ ]U , where f̄ = f ◦ φ. In particular, we have
that k ◦ jD = jU . To see that k is elementary, for a formula ψ(x0, . . . , xn−1)
and [fi]D ∈ MD such that MD |= ψ([f0]D, . . . , [fn−1]D), we know that {n ∈ µ |
V |= ψ(f0(n), . . . , fn−1(n))} ∈ D. Since D = φ∗(U), we know that {α ∈ λ |
V |= ψ(f0(φ(α)), . . . , fn−1(φ(α)))} ∈ U , hence MU |= ψ([f̄0]U , . . . , [f̄n−1]U ).

It remains to check that k is jD(η)-MD-complete for all η < κ. Fix η < κ.
Let X ∈ MD be such that MD |= |X| < jD(η). Let f : µ → [V ]≤η represent
X in MD. In particular, k(X) = [f̄ ]U . On the other hand, k“X = {k([g]D) |
g : µ → V, {n ∈ µ | g(n) ∈ f(n)} ∈ D}. It is clear that k“X ⊂ k(X). Let us check
the other direction. Let [g]U ∈ k(X), so we have {α < λ | g(α) ∈ f̄(α)} ∈ U . Since
each f̄(α) has size at most η, we can let h : λ→ η be such that g(α) is the h(α)-th
element of f̄(α). Here, for each α, we fix some well ordering of f̄(α) of order type
≤ η. By the indecomposability assumption on U , we know that h(α) =U r ◦ φ for
some r : µ→ η. Define g′ : µ→ V such that g′(n) is the r(n)-th element of f(n).

We claim that k([g′]D) = [g]U , which is clearly sufficient. Let ḡ = g′ ◦ φ and
consider [ḡ]U = k([g′]D). In short, we need to show g =U ḡ. This amounts to
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showing that on a measure one set in U , ḡ(α) is the h(α)-th element of f̄(α). To
see this, note that the following two sets belong to U :

• A0 := {α < λ | f̄(α) = f(φ(α)), ḡ(α) = g′(φ(α)), h(α) = r(φ(α))}, and
• A1 := {α < λ | g′(φ(α)) is the r(φ(α))-th element of f(φ(α))},

so A0 ∩A1 ∈ U is as desired. □

Let W be a possibly external MD-ultrafilter on jD(κ) derived from k using [id]U .
In other words, for all A ∈MD such that MD |= A ⊆ jD(κ), we put A ∈ W if and
only if [id]U ∈ k(A). Then Theorem 4.3 implies that W is MD-jD(η)-complete for
all η < κ. To see this, given A ⊂ W such that A ∈ MD and MD |= |A| < jD(η),
by Theorem 4.3 it follows that k(A) = k“A. In particular, k(

⋂
A) =

⋂
k“A. Since

for each X ∈ A, [id]U ∈ k(X), we have that [id]U ∈ k(
⋂

A), namely,
⋂

A ∈W .
The following is due to Kunen and Goldberg [Gol20].

Lemma 4.4. Let U be as in the hypothesis of Fact 4.2, and let D, jD, k be as in
the conclusion of Theorem 4.3. Furthermore, assume that 2γ < κ. Then for any
x ∈ [V ]γ , W ∩ jD(x) ∈MD.

Proof. Let σ = jD(x). By Theorem 4.3, k(σ) = k“σ. In MU , let B′ = {X ∈ k(σ) |
[id]U ∈ X}. Since MD |= |σ| = jD(γ), we can fix a bijection γ : σ ↔ jD(γ)
in MD and let B = k(γ)“B′. Let f : λ → P (γ) be such that j(f)([id]U ) = B.
By the indecomposability assumption on U , there exists g : µ → P (γ) such that
f =U g ◦ φ. By the definition, k([g]D) = [g ◦ φ]U = [f ]U = B. As a result,
(γ)−1([g]D) = W ∩ jD(x). □

4.1. The C-sequence number. In the remainder of this section, we investigate
the effect of the existence of indecomposable ultrafilters on other compactness phe-
nomena, beginning with the C-sequence number. The following result takes care
of a case that is not covered by [LHR21, Lemma 4.12].

Theorem 4.5. Suppose that θ, κ are infinite regular cardinals with κ > 2θ. If κ
carries a uniform [θ, κ)-indecomposable ultrafilter, then there exists a cardinal µ < θ

such that χ(C⃗) ≤ µ for every transversal C⃗ for □(κ,<κ).

Proof. Suppose U is a [θ, κ)-indecomposable ultrafilter on κ. We may assume U is
θ-incomplete for non-triviality. By [Pri73, Theorem 2], we may also assume U is
weakly normal. Let φ : κ → µ with µ < θ be given by Fact 4.2. We shall prove
that µ is as sought.

To this end, let C⃗ = ⟨Cβ | β < κ⟩ be some transversal for □(κ,<κ). For each
δ < κ, define a function fδ : κ \ δ → P(δ) via

fδ(β) := Cβ ∩ δ.

By the choice of C⃗, | Im(fδ)| < κ, so we may pick a map gδ : µ → P(δ) satisfying
that fδ = gδ ◦φ (mod U). Clearly, we can choose gδ in a way that, for every i < µ,
there is some ηδ,i ≥ δ such that gδ(i) = Cηδ,i

∩ δ. Set D := φ∗(U).

Claim 4.5.1. Let γ < δ < κ. Then gγ ⊑D gδ, i.e., {i < µ | gγ(i) ⊑ gδ(i)} ∈ D.

Proof. This is because Bγ := {β ∈ κ \ γ | fγ(β) = gγ(φ(β))} and Bδ := {β ∈ κ \ δ |
fδ(β) = gδ(φ(β))} are both in U , and for every β ∈ Bγ ∩ Bδ, fγ(β) ⊑ fδ(β). But
D = φ∗(U), and hence gγ ⊑D gδ. □

Consider the set ∆ := {δ ∈ Eκ
>µ | {i < µ | sup(gδ(i)) = δ} ∈ D}.
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Claim 4.5.2. ∆ covers a club relative to Eκ
>µ.

Proof. Suppose not, so that S := Eκ
>µ\∆ is stationary. Define a regressive function

h : S → κ via

h(δ) := min{ε < δ | {i < µ | sup(gδ(i)) < ε} ∈ D}.

The fact that h is well-defined follows from the fact that cf(δ) > µ and D is an
ultrafilter on µ. Let S′ ⊆ S be stationary on which h is constant with value, say, ε.
Since γ < δ implies gγ ⊑D gδ, we actually have {i < µ | gδ(i) ⊆ ε} ∈ D for every
δ < κ. By the weak normality of U , we can find some δ < κ for which the set

{β ∈ acc(κ \ ε) | min(Cβ \ ε+ 1)) < δ}

is in U . As a result, {i < µ | gδ(i) ⊈ ε} ∈ D, which is a contradiction. □

As ∆ is in particular an element of [κ]κ, it suffices to check that for every α < κ,
there is a set b(α) ∈ [κ]µ such that ∆∩α ⊆

⋃
β∈b(α) Cβ . Set δ := min(∆\(α+1)) and

b(α) := {ηδ,i | i < µ}. For each γ ∈ ∆∩α, we know that {i < µ | gγ(i) ⊑ gδ(i)} ∈ D.
Recalling the definition of ∆, it follows that {i < µ | γ ∈ gδ(i)} ∈ D. Altogether,

∆ ∩ α ⊆
⋃
i<µ

gδ(i) =
⋃
i<µ

Cηδ,i
∩ δ ⊆

⋃
β∈b(α)

Cβ ,

as sought. □

Corollary 4.6. If a strongly inaccessible cardinal κ carries a uniform [θ, κ)-indecomposable
ultrafilter where θ is regular, then χ(κ) < θ. □

Remark 4.7. By Corollary 4.24 below, the preceding is optimal in the sense that
we cannot strengthen the conclusion to χ(κ) ≤ 1.

Corollary 4.8 (Prikry and Silver, [Pri73]). If a strongly inaccessible κ carries a
uniform indecomposable ultrafilter, then any finite collection of stationary subsets
of Eκ

>ω reflects simultaneously.

Proof. By [LHR21, Theorem A(4)], any finite collection of stationary subsets of
Eκ

>χ(κ) reflects simultaneously. Now appeal to Corollary 4.6. □

4.2. Ascent paths and narrow systems. Let us recall Laver’s definition of a
µ-ascent path and a couple of its generalizations.

Definition 4.9. Let (T,<T ) be a tree of height κ, and let µ be an infinite cardinal.

• A µ-ascent path through (T,<T ) is a sequence f⃗ = ⟨fα | α < κ⟩ satisfying
the following two conditions:
(1) for every α < κ, fα : µ→ Tα;
(2) for all α < β < κ, {i < µ | fα(i) <T fβ(i)} contains a tail in µ.

• A D-ascent path through (T,<T ), where D is a filter over µ, is a sequence

f⃗ = ⟨fα | α < κ⟩ satisfying Clause (1) above together with the following:
(2’) for all α < β < κ, {i < µ | fα(i) <T fβ(i)} is in D.

• A µ-ascending path through (T,<T ) is a sequence f⃗ = ⟨fα | α < κ⟩ satis-
fying Clause (1) above together with the following:
(2”) for all α < β < κ, there are i, j < µ such that fα(i) <T fβ(j).

We apply ideas similar to those of the previous subsection to show the following.



SQUARES, ULTRAFILTERS AND FORCING AXIOMS 19

Theorem 4.10. If a regular cardinal κ > 2ℵ1 carries a uniform indecomposable
ultrafilter, then every κ-Aronszajn tree admits an ω-ascent path.

Proof. Let U be the indecomposable ultrafilter. We may assume U is countably
incomplete. Let φ : κ → ω be the finest partition associated with U as given by
Fact 4.2. Consider D := φ∗(U), which is a nonprincipal ultrafilter on ω.

Let (T,<T ) be a given κ-Aronszajn tree. Choose a transversal ⟨tβ | β < κ⟩ ∈∏
β<κ Tβ . For each δ < κ, define a map fδ : κ \ δ → Tδ via

fδ(β) := tβ ↾ δ.

Since |Tδ| < κ, there is gδ : ω → Tδ such that fδ = gδ ◦ φ (mod U). As before,
for all γ < δ < κ, Iγ,δ := {i < ω | gγ(i) <T gδ(i)} is in D.

For each γ < κ, define a map hγ : κ \ γ → D via hγ(δ) := Iγ,δ. Since U is
indecomposable, we can find Iγ ∈ [D]ℵ0 such that {δ ∈ κ \ (γ + 1) | Iγ,δ ∈ Iγ} is
in U . Then, we find a pseudointersection Pγ ∈ [ω]ℵ0 of the sets in Iγ . Finally, pick
P ∈ [ω]ℵ0 for which Γ := {γ < κ | Pγ = P} is cofinal in κ.

We check that for any pair γ < δ of ordinals from Γ, on a tail of i ∈ P , it is the
case that gγ(i) <T gδ(i). Recalling that the following set is in U :

{η ∈ κ \ (γ + 1) | Iγ,η ∈ Iη} ∩ {η ∈ κ \ (δ + 1) | Iδ,η ∈ Iη},

we may fix an η < κ such that Iγ,η ∈ Iγ and Iδ,η ∈ Iδ. Consequently, P = Pγ ⊆∗

Aγ,η and P = Pδ ⊆∗ Aδ,η. Therefore, for co-finitely many i ∈ P , gγ(i) <T gη(i)
and gδ(i) <T gη(i), which implies gγ(i) <T gδ(i). It now easily follows that (T,<T )
admits an ω-ascent path. □

Remark 4.11. The above proof makes it clear that if U is a uniform [θ, κ)-indecomposable
ultrafilter on κ > 2θ where θ is regular, then every κ-Aronszajn tree admits a D-
ascent path, where D is a filter on some µ < θ. To see this, if U is θ-incomplete,
then we can apply Fact 4.2 to get the finest partition φ and let D = φ∗(U). If U
is θ-complete, then in fact U is κ-complete. In this case, since there is a cofinal
branch of the tree, D can be taken to be a trivial filter on a singleton. Note that by
[LHR23, Lemmas 3.7 and 3.38(3)], if θ < κ are infinite regular cardinals and there
exists a κ-Aronszajn tree with a θ-ascent path, then every uniform ultrafilter over
κ is θ-decomposable.

Given a binary relation R on a set X, for a, b ∈ X, we say that a and b are
R-comparable iff a = b, a R b, or b R a. R is tree-like iff, for all a, b, c ∈ X, if a R c
and b R c, then a and b are R-comparable.

Definition 4.12 (Magidor-Shelah, [MS96]). S = ⟨
⋃

α∈I{α}× θα,R⟩ is a κ-system
if all of the following hold:

(1) I ⊆ κ is unbounded and, for all α ∈ I, θα is a cardinal such that 0 < θα < κ;
(2) R is a set of binary, transitive, tree-like relations on

⋃
α∈I{α} × θα and

0 < |R| < κ;
(3) for all R ∈ R, α0, α1 ∈ I, β0 < θα0 , and β1 < θα1 , if (α0, β0) R (α1, β1),

then α0 < α1;
(4) for every (α0, α1) ∈ [I]2. there are (β0, β1) ∈ θα0

× θα1
and R ∈ R such

that (α0, β0) R (α1, β1).

Define width(S) := sup{|R|, θα | α ∈ I}. A κ-system S is narrow if width(S)+ <
κ. For R ∈ R, a branch of S through R is a set B ⊆

⋃
α∈I{α} × θα such that for
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all a, b ∈ B, a and b are R-comparable. A branch B is cofinal iff sup{α ∈ I |
∃τ < θα (α, τ) ∈ B} = κ.

Definition 4.13 ([LH17]). The (θ, κ)-narrow system property, which is abbreviated
NSP(θ, κ), asserts that every narrow κ-system of width < θ has a cofinal branch.

By [LH17, Theorem 10.3], PFA implies that NSP(ω1, κ) holds for all regular
κ ≥ ℵ2. (In fact, as the proof in [LH17] shows, ISP(ω2), or, equivalently, GMP, is
enough to derive the desired conclusion.) Recall that, for a regular cardinal κ, the
tree property at κ, denoted TP(κ), is the assertion that there are no κ-Aronszajn
trees.

Theorem 4.14. Suppose that θ < κ are uncountable cardinals with κ regular,
NSP(θ, κ) holds, and κ carries a [θ, κ)-indecomposable ultrafilter. Then TP(κ) holds.

Before giving the proof we note that if 2θ < κ and θ is regular, then we can just
apply Remark 4.11 to get the desired conclusion, since a D-ascent path through T ,
where D is a uniform ultrafilter on µ < θ and T is a κ-tree, is clearly a κ-narrow
system of width < θ. However, as we demonstrate below, we do not need these
extra assumptions.

Proof. Let U be [θ, κ)-indecomposable ultrafilter on κ. Fix a κ-tree (T,<T ) and we
shall find a cofinal branch through it. Choose a transversal ⟨tα | α < κ⟩ ∈

∏
α<κ Tα.

For each α < κ, using the [θ, κ)-indecomposability of U , fix a set Sα ∈ [Tα]<θ such
that the following set is in U :

Xα := {β ∈ [α, κ) | tβ ↾ α ∈ Sα}.

We can then fix an unbounded set I ⊆ κ and a cardinal ν < θ such that |Sα| = ν
for all α ∈ I.

We claim that S = ⟨⟨Sα | α ∈ I⟩, {<T }⟩ is a system of height κ and width ν. The
only nontrivial thing to verify is the requirement that, for every pair (α, β) ∈ [I]2,
there are s ∈ Sα and t ∈ Sβ such that s <T t. To this end, fix such a pair (α, β) and
then fix γ ∈ Xα∩Xβ . Then tγ ↾β ∈ Sβ and tγ ↾α ∈ Sα, and clearly tγ ↾α <T tγ ↾β,
so we have found s and t as desired.

Now apply NSP(θ, κ) to find a cofinal branch b through S. Then b ∈
∏

α∈I′ Sα

for some cofinal I ′ ⊆ I and, for every (α, β) ∈ [I ′]2, we have b(α) <T b(β). It
follows that the <T -downward closure of {b(α) | α ∈ I ′} is a cofinal branch through
T . □

Corollary 4.15. Suppose that PFA holds and κ is a regular cardinal carrying a
uniform indecomposable ultrafilter. Then TP(κ) holds. In particular, if, in addition,
κ is inaccessible, then it is in fact Ramsey.

Proof. The “in particular” part follows from Theorem 4.14 and a theorem of Ke-
tonen [Ket80, Theorem 3.1] stating that if a weakly compact cardinal carries a
uniform indecomposable ultrafilter, then it is in fact Ramsey. □

We will improve this theorem in Section 5, showing that in fact, in such a situ-
ation, κ must be measurable.
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4.3. The Pr1 principle. As explained in the introduction to [Rin14], the following
principle of Shelah is intimately connected with non-productivity of chain condi-
tions. Note that it becomes stronger as we increase the third and fourth parameters.

Definition 4.16 (Shelah, [She88]). Suppose θ, χ ≤ κ are cardinals.

• Pr1(κ, κ, θ, χ) asserts the existence of a coloring c : [κ]2 → θ such that, for
every σ < χ, for every pairwise disjoint subfamily B ⊆ [κ]σ of size κ, for
every τ < θ, there are a, b ∈ B with a < b such that c[a× b] = {τ};

• Pr1(κ, κ, θ, (2, χ)) asserts the existence of a coloring c : [κ]2 → θ such that,
for every A ∈ [κ]κ, for every σ < χ, for every pairwise disjoint subfamily
B ⊆ [κ]σ of size κ, for every τ < θ, there are α ∈ A and b ∈ B with α < b
such that c[{α} × b] = {τ}.

Clearly, Pr1(κ, κ, θ, 1 + χ) implies Pr1(κ, κ, θ, (2, χ)). We now demonstrate a
constraint on the fourth parameter when the source cardinal carries a uniform
indecomposable ultrafilter. The following generalizes a remark made at the end of
Section 2 of [Rin14].

Theorem 4.17. Let F be a uniform filter on µ. If κ is a strongly inaccessible
cardinal such that every κ-Aronszajn tree admits an F -ascent path, then Pr1(κ, κ, 2,
(2, µ+)) fails.

Proof. Suppose for the sake of contradiction that c : [κ]2 → 2 is a counterexample.
Since κ is a strongly inaccessible, and c in particular witnesses κ ↛ [κ]22, the set
T := {c(·, β) ↾ α | α ≤ β < κ} forms a κ-Aronszajn tree, so it must admit an
F -ascent path. This means that we can find ⟨⟨βα,j | j < µ⟩ | α < κ⟩ such that:

• For all α < κ, the set bα := {βα,j | j < µ} is disjoint from α;
• for all α0 < α1 < κ, for F -many j < µ, c(·, βα0,j) ↾ α0 = c(·, βα1,j) ↾ α0.

Choose D ∈ [κ]κ such that for every (α, β) ∈ D, sup(bα) < β. For each α ∈ D, if
there are β ∈ D \ (α+ 1) and i < 2 such that c[{α} × bβ ] = {i}, then in particular
for all γ ∈ D \ (β + 1), for F -many j < µ, c(α, βγ,j) = i. We call such γ good
for α. Next we find E ∈ [D]κ and i < 2 such that for every α ∈ E, either no
β ∈ E \ (α + 1) is good for α or every β ∈ E \ (α + 1) is good for α as witnessed
by i. Finally, as c is a witnesses Pr1(κ, κ, 2, (2, µ+)), we can find (α, β) ∈ [E]2 such
that c[{α} × bβ ] = {1 − i}. But then this contradicts the fact that if β is good for
α then i must be the witnessing color. □

Corollary 4.18. Suppose that κ is a strongly inaccessible cardinal, θ ∈ Reg(κ),
and κ carries a uniform [θ, κ)-indecomposable ultrafilter. Then Pr1(κ, κ, 2, θ) fails.

Proof. This follows from Theorem 4.17 and Remark 4.11. □

4.4. Indexed square. In this section, we demonstrate that □ind(κ, θ) is compat-
ible with the existence of a uniform [θ+, κ)-ultrafilter on κ. By the following fact,
this is sharp.

Fact 4.19 ([LHR23, Theorem 4.4 and Lemma 3.38(3)]). Suppose that θ < κ is
a pair of infinite regular cardinals such that ⊟ind(κ, θ) holds. Then every uniform
ultrafilter over κ is θ-decomposable.

Fix for now a pair of infinite regular cardinals θ < κ, and let P = P(κ, θ) be the
forcing to add a □ind(κ, θ)-sequence introduced in [LH17, §7]. Conditions in P are
thus all sequences p = ⟨Cp

α,i | α ∈ acc(γp + 1), i(α)p ≤ i < θ⟩ such that
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• γp ∈ acc(κ);
• for all α ∈ acc(γp + 1), we have i(α)p < θ and ⟨Cp

α,i | i(α)p ≤ i < θ⟩ is a

⊆-increasing sequence of clubs in α, with acc(α) =
⋃

i(α)≤i<θ acc(Cp
α,i);

• for all α ∈ acc(γp + 1), i(α)p ≤ i < θ, and ᾱ ∈ acc(Cp
α,i), we have i(ᾱ)p ≤ i

and Cp
ᾱ,i = Cp

α,i ∩ ᾱ.

P is ordered by end-extension.

Let
˙⃗
C = ⟨Ċα,i | α < κ, ˙i(α) ≤ i < θ⟩ be the canonical P-name for the generically-

added □ind(κ, θ)-sequence. For each i < θ, let Ṫi be a P-name for the poset to

thread the ith column of
˙⃗
C. More precisely, the conditions of Ṫi are forced to be

the elements of {Ċα,i | α < λ ∧ ˙i(α) ≤ i}, and the ordering is end-extension.

Fact 4.20 ([HLH17, Lemma 3.18]). (1) For all i < θ, the two-step iteration

P ∗ Ṫi has a dense κ-directed closed subset.
(2) In V P, there is a system of commuting projections ⟨πij : Ti → Tj | i ≤ j <

θ⟩ defined by letting πij(Cα,i) = Cα,j for all i ≤ j < θ and Cα,i ∈ Ti.

The dense subset of P∗ Ṫi referenced in Clause (1) of the above fact can be taken
to be the collection of all (p, ṫ) such that p ⊩P ṫ = Cp

γp,i. We will refer to the set

of such pairs as Ui. It follows, that, if κ<κ = κ, then P ∗ Ṫi is forcing equivalent to
Add(κ, 1), the forcing to add a single Cohen subset to κ.

Lemma 4.21. Suppose that i < j < θ. Then

⊩P∗Ṫj
“for every club D ⊆ κ, there is α ∈ acc(D) such that ˙i(α) > i”.

In particular, forcing with Tj over V P does not add a thread through the ith column
of the generic □ind(κ, θ)-sequence.

Proof. Suppose that (p0, ṫ0) ∈ P∗Ṫj and Ḋ is a name for a club in κ. We can assume
that (p0, ṫ0) ∈ Uj . Recursively define a decreasing sequence ⟨(pn, ṫn) | n < ω⟩ from
Uj together with an increasing sequence of ordinals ⟨αn | n < ω⟩ such that, for all
n < ω, we have

• γpn < αn < γpn+1 ; and
• (pn+1, ṫn+1) ⊩ αn ∈ Ḋ.

The construction is straightforward. At the end, let γ := sup{γpn | n < ω} =
sup{αn | n < ω}. For j ≤ k < θ and m < n < ω, note that Cpm

γpm ,k = Cpn

γpn ,k ∩ γpm ;

for such k, let Ek :=
⋃
{Cpn

γpn ,k | n < ω}. Define a condition p extending each pn
by setting γp := γ, i(γ)p := j, and, for all k ∈ [j, θ), Cp

γ,k := Ek. Let ṫ be a P-name
for Ej . Then

• (p, ṫ) ∈ Uj is a lower bound for ⟨(pn, ṫn) | n < ω⟩;
• (p, ṫ) ⊩ γ ∈ acc Ḋ;

• (p, ṫ) ⊩ ˙i(γ) = j > i.

Since (p0, ṫ0) and Ḋ were chosen arbitrarily, this completes the proof. □

Let G be P-generic over V , and let C⃗ = ⟨Cα,i | α < κ, i(α) ≤ i < θ⟩ be
⋃
G.

Temporarily move to V [G]. For each i < θ, let Ti be the interpretation of Ṫi. Note

that forcing with Ti over V [G] adds a thread through the ith column of C⃗, i.e., a
club D ⊆ κ such that, for all α ∈ acc(κ), we have D ∩ α = Cα,i.
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Proposition 4.22. Suppose that i0 ≤ i1 < θ, t0 ∈ Ti0 , and t1 ∈ Ti1 . Then, for all
sufficiently large j < θ, the conditions πi0j(t0) and πi1j(t1) are compatible in Tj.

Proof. Let α0, α1 ∈ acc(κ) be such that t0 = Cα0,i0 and t1 = Cα1,i1 . If α0 = α1,

then πi0j(t0) = πi1j(t1) for all i1 ≤ j < θ. If α0 < α1, then, since C⃗ is a □ind(κ, θ)-
sequence, there is j0 ≥ i1 such that α0 ∈ acc(Cα1,j0). Then, for all j ≥ j0, we have
πi0j(t0) ≤Tj

πi1j(t1). The case in which α1 < α0 is symmetric. □

Theorem 4.23. Suppose that θ < κ are regular, κ is measurable, P = P(κ, θ), and
the measurability of κ is indestructible under forcing with Add(κ, 1). Suppose also
that W is a uniform ultrafilter over θ. Then, in V P, there is a uniform ultrafilter
U over κ such that, for all µ < κ,

(U is µ-decomposable) ⇐⇒ (W is µ-decomposable).

In particular, U is [θ+, κ)-indecomposable.

Proof. Let
˙⃗
C = ⟨Ċα,i | α < κ, ˙i(α) ≤ i < θ⟩ be the canonical P-name for the generic

□ind(κ, θ)-sequence. For each i < θ, let Ṫi be a P-name for the forcing to add a

thread through the ith column of
˙⃗
C. By Fact 4.20, for each i < θ, P ∗ Ṫi is forcing

equivalent to Add(κ, 1). Therefore, by our assumption about the indestructibility

of the measurability of κ, we can fix a P ∗ Ṫi-name U̇i for a normal κ-complete
ultrafilter over κ.

Claim 4.23.1. Let i < θ. Then

⊩P∗Ṫi
{α < κ | ˙i(α) = i} ∈ U̇i.

Proof. By the fact that U̇i is forced to be κ-complete, there is a name j̇ for an

ordinal below θ such that ⊩P∗Ṫi
{α < κ | ˙i(α) = j̇} ∈ U̇i. Note first that, in

V P∗Ṫi , there is a club D ⊆ κ through the set {α < κ | i(α) ≤ i}. As a result, by
the normality of Ui, j̇ is forced to be at most i. On the other hand, if j < i in

V P∗Ṫi , then, letting k : V P∗Ṫi → M be the ultrapower map with respect to Ui, we

can conclude that k(C⃗)κ,j is defined and is a thread through the jth column of C⃗,
contradicting Lemma 4.21. □

Let G be P-generic over V and let H0 be T0-generic over V [G]. For each i < θ,
the projection π0,i induces a filter Hi that is Ti-generic over V [G]. Let Ui denote

the realization of U̇i in V [G ∗ Hi]. Note that Ui ∈ V [G ∗ H0] for all i < θ. Only
U0 is an ultrafilter in V [G ∗H0], but each Ui is a normal ultrafilter with respect to
sets (and sequences of sets) in V [G].

In V [G∗H0], define an ultrafilter U on P(κ)V [G] as follows. For all X ∈ P(κ)V [G],
put X ∈ U if and only if {i < θ | X ∈ Ui} ∈ W . Note that P(θ)V [G∗H0] = P(θ)V ,
so W remains an ultrafilter in V [G ∗H0]. It follows that U is in fact an ultrafilter
on P(κ)V [G]. We defined U in V [G ∗ H0], but we now show that it is in fact in

V [G]. Work for now in V [G], and let U̇ be a T0-name for U .

Claim 4.23.2. For every X ∈ P(κ), either ⊩T0 X ∈ U̇ or ⊩T0 X /∈ U̇ .

Proof. Suppose for sake of contradiction that X ⊆ κ and there are t, t′ ∈ T0 such
that t ⊩ X ∈ U̇ and t′ ⊩ X /∈ U̇ . By extending t and t′ if necessary, we can fix sets
Y, Y ′ ∈W such that

• for all i ∈ Y , t ⊩T0
X ∈ U̇i; and
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• for all i ∈ Y ′, t′ ⊩T0
X /∈ U̇i.

Since, for each i < θ, π0i : T0 → Ti is a projection, and since U̇i is a Ti-name, this
implies that

• for all i ∈ Y , π0i(t) ⊩Ti
X ∈ U̇i; and

• for all i ∈ Y ′, π0i(t
′) ⊩Ti

X /∈ U̇i.

By Proposition 4.22, we can find j ∈ Y ∩ Y ′ such that π0j(t) and π0j(t
′) are

compatible in Tj . But this leads to a contradiction, since the two conditions decide

the statement “X ∈ U̇j” in opposite ways. □

It follows that U is in fact definable in V [G]. Since each U̇i is forced to be a

uniform ultrafilter, it follows that U is uniform. Also, since each U̇i is forced to
be normal, and in particular to concentrate on the set of limit ordinals below κ, U
also concentrates on the set of limit ordinals below κ. It remains to check that U
has the desired spectrum of decomposability. To this end, fix an infinite cardinal
µ < κ.

Suppose first that W is µ-decomposable, as witnessed by a function g : θ → µ.
Define a function f : κ→ µ by setting f(α) = g(i(α)) for all α ∈ acc(κ) (recall that
i(α) is the least ordinal i such that Cα,i is defined). We claim that f witnesses that
U is µ-decomposable. Suppose for sake of contradiction that H ∈ [µ]<µ is such
that f−1[H] ∈ U . Move to V [G ∗H0]. By definition of U and f , we have

{i < θ | {α ∈ acc(κ) | g(i(α)) ∈ H} ∈ Ui} ∈W.

By Claim 4.23.1, each Ui concentrates on the set {α ∈ acc(κ) | i(α) = i}, so the
above expression simplifies to

{i < θ | g(i) ∈ H} ∈W,

i.e., g−1[H] ∈ W , contradicting the fact that g witnesses the µ-decomposability of
W .

Suppose next that W is µ-indecomposable; we must show that U is also µ-
indecomposable. To this end, fix a function f : κ → µ. Move to V [G ∗H0]. Using
the κ-completeness of each Ui, define a function g : θ → µ by letting g(i) be the
unique η < µ such that f−1{η} ∈ Ui for all i < θ. Since W is µ-indecomposable,
we can find H ∈ [µ]<µ such that Y := g−1[H] ∈ W . Note that g and H are in V ,

since P∗ Ṫ0 is κ-distributive. Now, for all i ∈ Y , we have f−1[H] ⊇ f−1{g(i)} ∈ Ui.
Since Y ∈ W , it follows that f−1[H] ∈ U . Since f was arbitrary, it follows that U
is µ-indecomposable. □

Theorem C follows from Theorem 4.23. One application of this result is the
construction of a model in which an inaccessible cardinal κ carries a uniform inde-
composable ultrafilter and only satisfies the minimal amount of stationary reflection
implied by the existence of such an ultrafilter. The following corollary shows that
Corollary 4.8 is consistently sharp in two ways.

Corollary 4.24. Suppose that κ is a measurable cardinal. Then there is a forcing
extension in which the following all hold:

(1) κ is strongly inaccessible;
(2) κ carries a uniform indecomposable ultrafilter;
(3) there is a non-reflecting stationary subset of Eκ

ω;
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(4) for every stationary subset S ⊆ κ, there is a family of countably many
stationary subsets of S that does not reflect simultaneously.

Proof. We can assume that the measurability of κ is indestructible under Add(κ, 1).
Let P = P(κ, ω). V P is the desired model. Since P is κ-distributive, κ remains
strongly inaccessible there, and, by Theorem 4.23, κ carries a uniform indecompos-
able ultrafilter. The existence of a non-reflecting stationary subset of Eκ

ω follows
from [LHR21, Theorem 3.4(5)], and Clause (4) in the statement of the theorem fol-
lows from [HLH17, Theorem 2.18] and the observation that a □ind(κ, ω)-sequence
is a full □(κ,<ω1)-sequence in the sense of Definition 3.16. □

Note that, in the setup for Theorem 4.23, if θ is measurable, then by letting W
be a θ-complete ultrafilter over θ, we can require that the uniform ultrafilter U we
obtain over κ in the forcing extension is θ-complete. With a bit more care, we can
produce some variations on results of Gitik from [Git20]. Recall that a cardinal κ
is θ-strongly compact if every κ-complete filter over a set A can be extended to a
θ-complete ultrafilter over A.

Theorem 4.25. Suppose that θ < κ are cardinals such that θ is measurable, κ
is θ-strongly compact, and the θ-strong compactness of κ is indestructible under
forcing with Add(κ, 1). Then there is a cofinality-preserving forcing extension in
which □ind(κ, θ) holds and κ is θ-strongly compact.

Proof. Let P = P(κ, θ) and, for i < θ, let Ṫi be a P-name for the forcing to add a
thread through the ith column of the generically added □ind(κ, θ)-sequence. Let W
be a normal measure over θ. Let G be P-generic over V , and move to V [G], which is
our desired model. Let A be a set, and let F be a κ-complete filter over A. For each
i < θ, let Ḟi be a Ti-name for the filter over A generated by F in V [G]Ti . Because

Ti is κ-distributive, Ḟi is forced to be a κ-complete filter. Since κ is forced to be
θ-strongly compact in V [G]Ti , we can fix a Ti-name U̇i for a θ-complete ultrafilter

over A extending Ḟi.
Let H0 be T0-generic over V [G]. As in the proof of Theorem 4.23, H0 induces

a Ti-generic filter Hi for each i < θ; let Ui be the realization of U̇i in V [G ∗ Hi].
Note that W remains a normal measure over θ in V [G ∗H0]. Define an ultrafilter
U on (P(A))V [G] in V [G ∗H0] by setting

X ∈ U ⇐⇒ {i < θ | X ∈ Ui} ∈W

for all X ∈ (P(A))V [G]. Since each Ui extends F , U extends F as well. Moreover,
exactly as in the argument for the analogous fact in the proof of Theorem 4.23,
one can show that we in fact have U ∈ V [G]. It thus remains to show that U is
θ-complete. To this end, fix η < θ and a sequence ⟨Xξ | ξ < η⟩ of sets in U . Let
X :=

⋂
ξ<ηXξ. Move to V [G ∗H0]. By the definition of U and the θ-completeness

of W , there is a set Y ∈W such that, for all i ∈ Y and all ξ < η, we have Xξ ∈ Ui.
Then, by the θ-completeness of Ui for each i < θ, we have X ∈ Ui for all i ∈ Y .
But this implies that X ∈ U , as desired. □

5. Forcing axioms and indecomposable ultrafilters

We start by recalling some definitions.

Definition 5.1. Let M ≺ H(θ) and δ be a cardinal. We say M is δ-guessing (or
is a δ-guessing model) whenever for any z ∈M and any b ⊂ z, if it is the case that
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for every a ∈ M ∩ [M ]<δ we have b ∩ a ∈ M , then there is some b′ ∈ M such that
b′ ∩M = b ∩M . In such a case, we say that b is M -guessed, and that b′ guesses b.

Definition 5.2. We say M ≺ H(θ) is δ-internally unbounded if for any z ∈ M
and any x ∈ [z ∩M ]<δ, there is some y ∈ [z]<δ ∩M such that x ⊂ y.

Krueger [Kru19] showed that if M ≺ H(θ) is an ℵ1-guessing model, then M is
ℵ1-internally unbounded.

Definition 5.3. ISP(ω2) asserts that for all large enough θ, the collection {M ∈
Pℵ2

(H(θ)) |M ≺ H(θ), M is ℵ1-guessing} is stationary in Pℵ2
(H(θ)).

Viale and Weiss [VW11] showed that PFA implies ISP(ω2). Krueger [Kru19]
showed that ISP(ω2) implies SCH.

Theorem 5.4. ISP(ω2) implies that if κ > 2ℵ0 is a cardinal carrying a uniform in-
decomposable ultrafilter, then either κ is a measurable cardinal or κ is the supremum
of countably many measurable cardinals.

First, we record some known constraints regarding κ being a successor cardinal.

Fact 5.5 (Kunen-Prikry, [KP71]). For regular λ, if an ultrafilter U is λ+-decomposable,
then it is λ-decomposable.

Fact 5.6 (Prikry, [Pri73]). Suppose that λ is a singular strong limit cardinal such

that λ<λ < 2λ
+

. Then every uniform ultrafilter U on λ+ that is β-indecomposable
for a tail of β < λ is λ-decomposable.

Next, we prove some constraints regarding κ not being a strong limit cardinal.

Lemma 5.7. Suppose that ISP(ω2) holds, κ is a cardinal that is not a strong limit
cardinal, λ < κ is least such that 2λ ≥ κ, and cf(λ) > ℵ0. Then κ does not carry a
uniform indecomposable ultrafilter.

Proof. Suppose for the sake of contradiction that U is a uniform indecomposable

ultrafilter on κ. Let f⃗ = ⟨fα | α < κ⟩ be an injective sequence of elements of λ2.
Using the minimality of λ and the fact that U is indecomposable, choose for each

η < λ a countable set Fη ⊆ η2 such that {α < κ | fα ↾ η ∈ Fη} ∈ U . Let F⃗ = ⟨Fη |
η < λ⟩.

We first handle the case in which cf(λ) > ℵ1. Let θ be a sufficiently large regular

cardinal, and let N ∈ Pℵ2(H(θ)) be such that N ≺ H(θ), {U, F⃗ , f⃗} ⊆ N , and N is
an ℵ1-guessing model. Let η := sup(N ∩ λ), and note that cf(η) = ℵ1 (cf. [Via12,
Proposition 2.1(6)]). Let G := {g ∈ Fη | g is N -guessed}.

Claim 5.7.1. X := {α < κ | fα ↾ η ∈ G} is in U .

Proof. Suppose otherwise, and let H = Fη \G. Then Y = {α < κ | fα ↾η ∈ H} ∈ U .
For each h ∈ H, there is ξh ∈ N ∩ η such that h ↾ ξh /∈ N ; otherwise, h would be
N -guessed. Find ξ ∈ N ∩ η such that ξ ≥ ξh for all h ∈ H. Then, for all α ∈ Y , we
have fα ↾ ξ /∈ N . This contradicts the fact that Fξ ⊆ N . □

For each g ∈ G, let g∗ ∈ N be such that g∗ ∩ N = g ∩ N . By elementarity, we
have g∗ ∈ λ2 for all g ∈ G. By the ℵ1-internal unboundedness of N , we can find a
countable set z ∈ N such that g∗ ∈ z for all g ∈ G. We may assume that z ⊆ λ2.
For each ξ < λ, let F∗

ξ = {h ↾ ξ | h ∈ z}, and let X∗
ξ = {α < κ | fα ↾ ξ ∈ F∗

ξ }. Then
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⟨F∗
ξ | ξ < λ⟩ and ⟨X∗

ξ | ξ < λ⟩ are in N . By elementarity, X∗
ξ ∈ U for every ξ < λ.

Moreover, if ξ < ξ′ < λ, then X∗
ξ ⊇ X∗

ξ′ . Therefore, since U is indecomposable

and cf(λ) > ℵ0, we have X∗ :=
⋂

ξ<λX
∗
ξ ∈ U . Let T = {h ↾ ξ | h ∈ z, ξ < λ},

so T ⊆ <λ2 is a tree. Then, for every α ∈ X∗, fα is a cofinal branch through T .
However, T is a tree of height λ with countable levels, so, since cf(λ) > ℵ1, T has
at most countably many cofinal branches. This is a contradiction.

Assume now that cf(λ) = ℵ1. Let ⟨λi | i < ω1⟩ be an increasing sequence of
cardinals cofinal in λ. Consider the tree T of height ω1 whose ith level Ti is defined
to be {l ∈ λi2 | ∃β ≥ i ∃g ∈ Fλβ

such that l = g ↾ λi}. For each ξ < ω1, let
Xξ = {α < κ | fα ↾λξ ∈ Tξ}. Then we have that for every ξ < ξ′ ∈ ω1, Xξ ∈ U and
Xξ ⊇ Xξ′ . Since U is ω1-indecomposable, X =

⋂
ξ<ω1

Xξ ∈ U . In particular, T
has κ many branches. On the other hand, T has size and height ω1, so such a tree
is a weak Kurepa tree, whose existence contradicts ISP(ω2) (see [CK17, Theorem
2.8]). □

Remark 5.8. Lemma 5.7 is optimal in the following sense: it is consistent that
ISP(ω2) holds and 2ℵ0 carries a uniform indecomposable ultrafilter. To see this, Cox
and Krueger [CK17] showed that ISP(ω2) can be made indestructible under adding
any number of Cohen reals.5 Starting with their model and adding measurably
many Cohen reals will result in the model as desired.

Proof of Theorem 5.4. Suppose that ISP(ω2) holds, and suppose that κ > 2ℵ0 car-
ries a uniform indecomposable ultrafilter U . To avoid triviality, assume that U is
countably incomplete. By Lemma 5.7, κ > 2ω1 necessarily. So, by Fact 4.2, we
may fix a finest partition φ : κ→ ω. Let D := φ∗(U) be the Rudin-Keisler projec-
tion. Let jU : V → MU , jD : V → MD and k : MD → MU be the corresponding
elementary embeddings. Let W be the MD-ultrafilter derived from k and [id]U .
By Theorem 4.3, W is MD-jD(µ)-complete for all µ < κ. By Lemma 4.4, for each
z ∈ Pω2(P(κ)), we have W ∩ jD(z) ∈MD.

Let θ > 2κ be a large enough regular cardinal. For each x ∈ Pω2
(H(θ)) with

x ≺ H(θ), let fx : ω → x∩P(P(κ)) represent W∩jD(x) in MD. By the elementarity
of jD, we can insist on the following for each n < ω:

(1) fx(n) is an ultrafilter on x ∩ P(κ);
(2) fx(n) is x-ω1-complete, namely, if ⟨Ai ∈ fx(n) | i < ω⟩ ∈ x, then

⋂
i<ω Ai ∈

fx(n).

The reason why we can insist on the preceding is that for any x ∈ Pω2
(H(θ))

with x ≺ H(θ), MD |= W ∩ jD(x) is an ultrafilter on jD(x ∩ P(κ)) and for any
⟨A∗

i ∈W ∩ jD(x) | i < jD(ω)⟩ ∈ jD(x), we have
⋂

i<jD(ω)A
∗
i ∈W ∩ jD(x), since W

is MD-jD(ω1)-complete.
Let θ∗ >> θ be a sufficiently large regular cardinal and M ≺ H(θ∗) be an ℵ1-

guessing model of size ℵ1 containing all relevant objects. Note that M is internally
unbounded by [Kru19]. Let y = M ∩H(θ). For each x ∈ Pω2

(H(θ))∩M , we know
that the following set is in D: Bx = {n < ω | fx(n) = fy(n) ∩ x}.

Claim 5.8.1. If m ∈ ω is such that the set {x ∈ M ∩ Pω2
(H(θ)) | m ∈ Bx} is

cofinal in M ∩ Pω2(H(θ)), then fy(m) is M -guessed.

5It was later shown in [HLHS24] that ISP(ω2) is in fact always indestructible under adding
any number of Cohen reals.
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Proof. Let m be as in the claim. For any x ∈ M ∩ [M ]ω, we need to show that
fy(m) ∩ x ∈ M . We may assume x ⊂ P (κ). By the hypothesis, there is some x′ ∈
M ∩Pω2(H(θ)) containing x such that m ∈ Bx′ . As a result, fx′(m) = fy(m) ∩ x′.
But then fy(m) ∩ x = fx′(m) ∩ x ∈M . □

Note that if m is as in the claim and a ∈ M guesses fy(m), then the elemen-
tarity of M and the fact that fy(m) is y-ω1-complete imply that a is a σ-complete
ultrafilter on κ.

Claim 5.8.2. X := {i ∈ ω | fy(i) is M -guessed } is in D.

Proof. Suppose not for the sake of contradiction. For each i ∈ ω \X, Claim 5.8.1
implies that we can fix zi ∈ M ∩ Pℵ2

(H(θ)) such that, for all z ∈ M ∩ Pℵ2
(H(θ))

containing zi, we have i /∈ Bz. By the ℵ1-internal unboundedness of N , there is
some z∗ ∈M ∩Pℵ2

(H(θ)) such that zi ⊂ z∗ for all i ∈ ω \X. But then i /∈ Bz∗ for
all i ∈ ω \X, contradicting the fact that Bz∗ ∈ D. □

As a result, for each ℵ1-guessing model N ≺ H(θ∗), there is a set XN ∈ D such
that for every i ∈ XN , fN∩H(θ)(i) is ℵ1-guessed, hence there is some σ-complete

ultrafilter Vi = V N
i ∈ N on κ such that Vi ∩ N = fN∩H(θ)(i) ∩ N . If cf(κ) > ω

and there is some ℵ1-guessing model with one of V N
i being κ-complete, then κ

is measurable. If cf(κ) = ω and for any µ < κ there is an ℵ1-guessing model N
with V N

i being µ-complete, then κ is a supremum of countably many measurable
cardinals. Suppose the situation above does not occur for the sake of contradiction.

Define

δ :=

{
κ, if cf(κ) > ω;

µ, if cf(κ) = ω,

where µ < κ is some cardinal such that for no ℵ1-guessing model N , for no i ∈ XN ,
V N
i is µ-complete.

By the ℵ1-internal unboundedness of N , there exists some zN ∈ N∩Pℵ1
(N) such

that V N
i ∈ zN for all i ∈ XN . Apply the pressing down lemma to find stationary

S ⊆ Pℵ2(H(θ∗)) consisting of ℵ1-guessing models and a z such that, for all N ∈ S,
zN = z. We may also assume that every a ∈ z is a σ-complete ultrafilter on κ.
Fix a ∈ z. Let its completeness be γa. Then we can find a ⊇-decreasing sequence

A⃗a = ⟨Aa
i ∈ a | i < γa⟩ such that

⋂
i<γa

Aa
i = ∅. Note that, necessarily, γa is a

measurable cardinal below δ.
Let E = {Aa

i | a ∈ z, i < γa} and γ∗ = supa∈z γa. Note that by our assumption
γ∗ < κ: this is clear when cf(κ) > ω and when cf(κ) = ω, our assumption implies
that each γa < δ for all a ∈ z. Since |E| ≤ γ∗, we know that W ∩ jD(E) ∈ MD.
To see this, note that γ∗ is either a singular cardinal of countable cofinality or
a measurable cardinal. If γ∗ is a singular cardinal of countable cofinality, then
γ∗ is a strong limit cardinal. By [Kru19], ISP(ω2) implies SCH. Hence 2γ

∗
=

(γ∗)+. Theorem 5.6 implies that κ > (γ∗)+. As a result, Lemma 4.4 implies that
jD(E)∩W ∈MD. If γ∗ is a measurable cardinal < κ, then Lemma 5.7 implies that
2γ

∗
< κ. We can then apply Lemma 4.4 to get the same conclusion as desired.

Let l : ω → V represent W ∩ jD(E) in MD. Let F = ⟨A⃗a | a ∈ z⟩. Then

in MD, it is true that for each B⃗ ∈ j(F), there exists some i < lh(B⃗) such that

Bj ̸∈ W ∩ jD(E) for all j > i. Here we are using the fact that B⃗ ⊂ jD(E),

lh(B⃗) ≤ jD(γ∗) and W is MD-jD((γ∗)+)-complete. By  Loś’ theorem, there is a
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set A ∈ D such that for each i ∈ A and a ∈ z, there is some ja,i < γa such that
for every k > ja,i, it is the case that Aa

k ̸∈ l(i). By adjusting l if necessary, we
may assume that A = ω for simplicity. Therefore, for each a ∈ z, we can find
ja = supi∈ω ja,i + 1 < γa (recall that γa is measurable) such that Aa

ja
̸∈ l(i) for all

i ∈ ω.
Finally, consider L = {Aa

ja
| a ∈ z}. Let N ∈ S be such that L ∈ N . In MD,

there is some a∗ ∈ jD(z) such that a∗ ∩ jD(N) = W ∩ jD(N). Let p : ω → z

represent a∗. Consider q : ω → L such that q(i) = A
p(i)
jp(i)

for every i ∈ ω. Then

[q]D ∈ jD(L) ∩ a∗ ∩ jD(N) ⊆ jD(L) ∩W . However, by our choice of q, we have
[q]D ̸∈ [l]D = W ∩ jD(E) ⊇W ∩ jD(L). This is a contradiction. □

Proof of Theorem A. PFA implies 2ℵ0 = ω2 and ISP(ω2). Apply Theorem 5.4. □

Finally, as promised in the introduction, we make use of all the combinatorial
analyses in the proceeding sections to show that Theorem A is optimal.

Theorem 5.9. MM is consistent with the existence of a non weakly compact
strongly inaccessible cardinal κ carrying a uniform [ℵ2, κ)-indecomposable ultra-
filter.

Proof. Start with a model of MM that contains a measurable cardinal κ whose
measurability is indestructible under Add(κ, 1). Let P := P−(κ, ω1) be the forcing
from Definition 3.9 for adding a witness to □ind

− (κ, ω1), and let G be P-generic over
V . By Lemma 3.10, P is ω2-directed closed, so MM holds in V [G]. Moreover,
□ind

− (κ, ω1) holds in V [G] so, by Proposition 3.8, κ is not weakly compact in V [G].
It remains to show that κ carries a uniform [ℵ2, κ)-indecomposable ultrafilter in

V [G]. The proof of this fact is almost identical to that of Theorem 4.23, so we only
provide a few details, leaving the rest to the reader.

In V [G], let C⃗ =
⋃
G = ⟨Cα,i | α ∈ acc(κ), i(α) ≤ i < ω1⟩ be the generically

added witness to □ind
− (κ, ω1). For each i < ω1, define a poset Ti as follows. The

underlying set of Ti is {Cα,i | α ∈ acc(κ) and i(α) ≤ i}. Given Cα,i, Cβ,i ∈ Ti,
we set Cβ,i ≤Ti

Cα,i if and only if α ≤ β and, for all i ≤ j < ω1, we have
Cα,j = Cβ,j ∩α. The following facts are proven exactly as in [HLH17, Lemma 3.18]
and Proposition 4.22 above.

• In V , for all i < ω1, the two-step iteration P ∗ Ṫi has a dense κ-directed
closed subset of cardinality κ.

• In V [G], there is a system of commuting projections ⟨πij : Ti → Tj |
i ≤ j < ω1⟩ defined by letting πij(Cα,i) = Cα,j for all i ≤ j < ω1 and
Cα,i ∈ Ti.

• Suppose that i0 ≤ i1 < ω1, t0 ∈ Ti0 , and t1 ∈ Ti1 . Then, for all sufficiently
large j < θ, the conditions πi0j(t0) and πi1j(t1) are compatible in Tj .

Let W be a uniform ultrafilter on ω1, and use it, together with the fact that, for
each i < ω1, κ is measurable in the extension of V [G] by Ti, to define an ultrafilter
U on κ as in the proof of Theorem 4.23. The verification that U is a uniform,
[ℵ2, κ)-indecomposable ultrafilter is as in the proof of Theorem 4.23, so we leave it
to the reader. □
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6. Open questions

Question 6.1. Does PID, MRP or RC imply that any strong limit cardinal car-
rying a uniform indecomposable ultrafilter is either measurable or a supremum of
countably many measurable cardinals?

Question 6.2. Does SSR refute □(κ, ω1) for regular κ > ω2?
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