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Abstract. We introduce three families of diagonal reflection principles for

matrices of stationary sets of ordinals. We analyze both their relationships
among themselves and their relationships with other known principles of simul-

taneous stationary reflection, the strong reflection principle, and the existence

of square sequences.

1. Introduction

The study of compactness and reflection principles has been the subject of a sig-
nificant amount of set theoretic research, and the careful investigation of the tension
existing between compactness principles that arise due to the presence of large car-
dinals and incompactness principles that tend to hold, for example, in canonical
inner models, has been quite fruitful. Particularly prominent among the compact-
ness principles that have been studied are various principles of stationary reflection.
In this article, we investigate the relationships between different principles of sta-
tionary reflection, particularly focusing on diagonal stationary reflection principles.
We also prove some results closely linking these diagonal reflection principles with
certain square principles, which provide concrete instances of incompactness. We
begin by giving some background, to motivate the questions we are going to address.
The notation in the upcoming definition follows [4] and [8].

Definition 1.1. Suppose that λ is a regular uncountable cardinal and S ⊆ λ is
stationary.

(1) If α < λ, then S reflects at α if cf(α) > ω and S ∩α is stationary in α. We
say that S reflects if there is α < λ such that S reflects at α.

(2) If T is a family of stationary subsets of λ and α < λ, then T reflects
simultaneously at α if T reflects at α for every T ∈ T . We say that T
reflects simultaneously if there is α < λ such that T reflects simultaneously
at α.

(3) If 1 < κ ≤ λ, then Refl(<κ, S) is the assertion that every family of fewer
than κ-many stationary subsets of S reflects simultaneously. Refl(<κ+, S)
is typically denoted by Refl(κ, S).
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(4) Refl∗(<κ, S) is the assertion that, if P is a λ-directed closed forcing and
|P| ≤ λ, then P “Refl(<κ, S)”.

A major appeal of these principles is that they imply the failure of certain square
principles.

Definition 1.2. Let λ be a limit of limit ordinals.

(1) A sequence ~C = 〈Cα | α < λ, α limit〉 is a coherent sequence of length λ if,
for every limit ordinal α < λ,
(a) Cα is a nonempty collection of clubs in α; and
(b) for every C ∈ Cα and every limit point β of C, we have C ∩ β ∈ Cβ .

If, moreover, κ is a cardinal and |Cα| < κ for every limit α < λ, then ~C is
said to have width <κ.

(2) If ~C is a coherent sequence of length λ, then a thread through ~C is a club

subset T of λ that coheres with ~C, i.e., for every limit point β of T , we have
T ∩ β ∈ Cβ .

(3) If κ is a cardinal, then a �(λ,<κ)-sequence is a coherent sequence of length
λ and width <κ that does not have a thread. The principle �(λ,<κ) asserts
that there is a �(λ,<κ) sequence. In place of �(λ,<κ+), we may write
�(λ, κ).

�(λ, 1) is known as �(λ), and �(λ,<κ) becomes weaker as κ increases. In
[8], Hayut and the second author analyzed the effects of simultaneous stationary
reflection on these kinds of square principles. In what follows and throughout the
paper, if κ < β where κ is an infinite cardinal and β is an ordinal, then we will write

Sβκ for the set of limit ordinals less than β of cofinality κ. Similarly, Sβ<κ denotes

the set of limit ordinals less than β of cofinality less than κ, and Sβ≤κ, S
β
≥κ, S

β
>κ

have the obvious meaning.

Theorem 1.3 ([8, Thm. 2.13]). Suppose that κ < λ are cardinals, λ is regular, and
Refl(<κ, S) holds for some stationary S ⊆ Sλ≥κ. Then �(λ,<κ) fails.

The first author came to this from a different angle, looking for ways to derive the
strongest possible failure of these square principles from the assumption of certain
forcing axioms. Forcing axioms such as Martin’s Maximum (MM) or the subcom-
plete forcing axiom (SCFA) imply reflection principles of the form Refl(ω1, S

λ
ω) for

sufficiently large regular λ (in the case of MM, λ > ω1 is enough, while in the case of
SCFA, λ > 2ω is needed). So the above theorem yields only the failure of �(λ,<ω)
as a consequence of these types of stationary reflection principles.

Looking to find improvements of Theorem 1.3 that would remove the hypothesis
that S ⊆ Sλ≥κ, Hayut and the second author introduced the following definition.

Definition 1.4 ([8]). A �(λ,<κ)-sequence 〈Cα | α < λ, α limit〉 is full if for
unboundedly many α < λ, there is a club of β < λ such that α is a limit point of
some C ∈ Cβ .

They then proved that the requirement that S ⊆ Sλ≥κ can be removed if one

only wants to preclude the existence of full �(λ,<κ)-sequences.

Theorem 1.5 ([8, Thm. 2.18]). Suppose that κ < λ are uncountable cardinals,
where λ is regular, and suppose that Refl(<κ, S) holds, for some stationary S ⊆ λ.
Then there is no full �(λ,<κ)-sequence.
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So this theorem shows that there is no full �(λ, ω1)-sequence if Refl(ω1, S
λ
ω) holds

and λ > ω2, for example. The following theorem serves to preclude the existence
of a sequence that is not full:

Theorem 1.6 ([8, Thm. 2.20]). Suppose that κ < λ are regular, uncountable car-
dinals. If Refl(2, λ) holds, then there is no �(λ,<κ) sequence that is not full.

Notice that Refl(1, λ), and hence Refl(2, λ), fails if λ = µ+ where µ is regular,
as witnessed by Sλµ . Therefore, Theorem 1.6 is only nontrivial if λ is either weakly
inaccessible or the successor of a singular cardinal. In addition, since the stationary
reflection principles derived from the abovementioned forcing axioms only yield
stationary reflection for subsets of Sλω, Theorem 1.6 is not particularly relevant for
the study of their consequences. For these reasons, the first author was led to
introduce the diagonal stationary reflection principle, which we formulate in the
following definition, along with some natural variants.

Definition 1.7. Let λ be a regular cardinal, let S ⊆ λ be stationary, and let
κ < λ. The diagonal stationary reflection principle DSR(<κ, S) asserts that for
every matrix 〈Sα,i | α < λ, i < jα〉 of stationary subsets of S such that jα < κ
for every α < λ, there are a γ < λ of uncountable cofinality and a club F ⊆ γ
such that for every α ∈ F and every i < jα, Sα,i reflects at γ. The version of the
principle in which we only require jα ≤ κ is denoted DSR(κ, S).

We will also be considering weakenings of this principle. Let uDSR(<κ, S) and
sDSR(<κ, S) result from modifying the definition of DSR(<κ, S) by requiring that
the subset F ⊆ γ be unbounded in γ or stationary in γ, respectively. We note
that, for all three principles, Clause (1) of Definition 1.1 implies that any ordinal γ
witnessing an instance of the principle must have uncountable cofinality. As with
Refl, if S is a stationary subset of a regular uncountable cardinal λ, let DSR∗(<κ, S)
denote the statement that DSR(<κ, S) holds and continues to hold in any extension
by a λ-directed closed forcing notion of size at most λ (and similarly for uDSR∗ and
sDSR∗).

Remark 1.8. It is easily seen that each of the above principles, as well as each of
the other stationary reflection principles considered in this paper, is equivalent to
the apparent strengthening formed by requiring the existence of stationarily many
such γ at which reflection holds as opposed to just one.

The original point of introducing these reflection principles was the fact that, for
all regular λ ≥ ω2, the principle DSR∗(ω1, S

λ
ω) follows from either MM or SCFA+CH,

and the first author proved that DSR(ω1, S
λ
ω) implies the failure of�(λ, ω1) if λ > ω2

and the failure of �(λ, ω) if λ = ω2:

Theorem 1.9 ([7, Thm. 3.4]). Let κ < λ be cardinals, with λ regular, and suppose
that DSR(<κ, S) holds for some stationary set S ⊆ λ. Then �(λ,<κ) fails.

We will reduce the hypothesis of the theorem from DSR(<κ, S) to sDSR(<κ, S)
in Theorem 2.1.

If λ is a regular cardinal, S ⊆ λ is stationary, and κ < λ, then it is clear from
Definition 1.7 that

DSR(<κ, S)⇒ sDSR(<κ, S)⇒ uDSR(<κ, S)⇒ Refl(<κ, S).

Our obvious initial question, raised in light of Theorems 1.3 and 1.9, was whether
Refl(ω1, S) implies DSR(ω1, S) and, more generally, the extent to which the arrows
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in the above sequence of implications can be either reversed or strengthened. The
paper is organized as follows. In Section 2, we establish some implications and
equivalences in ZFC. We will also prove our strengthening of Theorem 1.9, showing
that sDSR(<κ, S) for some stationary S ⊆ λ is enough to ensure the failure of
�(λ,<κ). Section 3 contains results that separate various stationary reflection
principles by showing that certain implications do not hold in ZFC. A consequence
of the results of this section will be the fact that, in general, none of the arrows in
the above sequence of implications are reversible. For reference, a detailed summary
of these results can be found at the beginning of Subsection 3.3. In Section 4, we
extend a result of Larson [14, Theorem 4.6] by proving, among other things, that
the strong reflection principle, SRP, does not imply uDSR(1, Sλω) for any regular
λ > ω2. Then, in Section 5, we prove that our strengthening of Theorem 1.9 is
sharp in the sense that the principles sDSR(<κ, S) and �(λ, κ) are compatible with
one another for infinite regular cardinals κ < λ and a stationary S ⊆ λ. Finally, in
Section 6, we list some open questions that are raised by our work.

2. Implications

We begin this section with our strengthening of Theorem 1.9. Here and through-
out the paper, for a set of ordinals C, we will use the notation lim(C) for the set
of limit points of C below the supremum of C.

Theorem 2.1. Suppose that 1 < κ < λ are cardinals, with λ regular, and suppose
that there is a stationary S ⊆ λ for which sDSR(<κ, S) holds. Then �(λ,<κ) fails.

Proof. Suppose for sake of contradiction that ~C = 〈Cα | α ∈ lim(λ)〉 is a �(λ,<κ)-
sequence. For each α ∈ lim(λ), let Cα = {Cα,i | i < jα}, where jα < κ. For each
limit α ∈ lim(λ) and each i < jα, let

Sα,i = {β ∈ S \ (α+ 1) | for all k < jβ , Cβ,k ∩ α 6= Cα,i}.

Claim 2.2. There is α0 < λ such that Sα,i is stationary for all limit α with
α0 ≤ α < λ and all i < jα.

Proof. Otherwise, there would be an unbounded subset A ⊆ lim(λ) such that, for
all α ∈ A, there is iα < jα such that Sα,iα is nonstationary. For each α ∈ A, let Dα

be a club in λ such that Dα ∩ Sα,iα = ∅. Define an ordering <T on A as follows.
For all α, β ∈ A, set α <T β if and only if α < β and Cβ,iβ ∩α = Cα,iα . It is easily
verified that T = (A,<T ) is a tree.

We claim that T has no antichains of size κ. To this end, fix a set B ∈ [A]κ. We
will find two elements of B that are <T -comparable. Fix a γ ∈ S ∩

⋂
α∈B Dα with

γ > sup(B). Then, for all α ∈ B, we have γ /∈ Sα,iα , so there is kα < jγ such that
Cγ,kα ∩ α = Cα,iα . Since jγ < κ, we can find α < β in B such that kα = kβ . But
then Cβ,iβ ∩ α = Cγ,kβ ∩ α = Cα,iα , so α <T β.

The tree T therefore has height λ and all of its levels have size less than κ. Since
κ < λ, it then follows from a result of Kurepa [11] that T has a cofinal branch.
Let A∗ be such a cofinal branch. Then A∗ is cofinal in λ and, for all α < β in

A∗, we have Cα,iα = Cβ,iβ ∩ α. Therefore,
⋃
α∈A∗ Cα,iα is a thread through ~C,

contradicting the assumption that ~C is a �(λ,<κ)-sequence. �

Fix α0 < λ as in the claim. By sDSR(<κ, S), we can find a γ ∈ Sλ>ω \ (α0 + 1)
and a stationary F ⊆ γ\α0 such that, for all α ∈ F and all i < jα, Sα,i reflects at γ.
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Fix an arbitrary C ∈ Cγ , and find an α ∈ lim(C) ∩ F . Since α ∈ lim(C), it follows
that there is i < jα such that C ∩ α = Cα,i. Since α ∈ F , we know that Sα,i ∩ γ is
stationary in γ, so we can find β ∈ lim(C)∩Sα,i. Then β > α and, since β ∈ lim(C),
there is k < jβ such that Cβ,k = C ∩ β. But then Cβ,k ∩ α = C ∩ α = Cα,i,
contradicting the fact that β ∈ Sα,i and finishing the proof of the theorem. �

The diagonal stationary reflection principles we are dealing with here are closely
related to Paul Larson’s principle OSRω2 from [14]. Here is a slight reformulation
and generalization of the original principle.

Definition 2.3. Suppose that λ ≥ ω2 is a regular cardinal and S ⊆ λ is stationary.
OSR(S) is the assertion that, for every sequence 〈Sα | i < λ〉 of stationary subsets
of S, there is a δ ∈ Sλ>ω such that for all α < δ, Sα reflects at δ.

Larson wrote OSRω2
for the principle OSR(Sω2

ω ). The following lemma shows
among other things that, for stationary S ⊆ λ, the principle OSR(S) is equivalent
to each of the principles DSR(<λ, S), uDSR(<λ, S) and sDSR(<λ, S). Thus, differ-
ences between the principles DSR(<κ, S), uDSR(<κ, S) and sDSR(<κ, S) can only
be observed when sup(S) > κ.

Lemma 2.4. Suppose that λ ≥ ℵ2 is a regular cardinal and S ⊆ λ is stationary.
Then the following are equivalent.

(1) uDSR(<λ, S).
(2) DSR(<λ, S).
(3) OSR(S).
(4) For every matrix 〈Sα,i | α < λ, i < jα〉 of stationary subsets of S such that

jα < λ for all α < λ, there is γ ∈ Sλ>ω such that Sα,i reflects at γ for all
α < γ and i < jα.

Proof. It is immediate that clause (4) implies clauses (1), (2), and (3), and that
clause (2) implies clause (1). To see that clause (3) implies clause (4), suppose
that OSR(S) holds and that we are given a matrix 〈Sα,i | α < λ, i < jα〉 as in
the statement of clause (4). Assume without loss of generality that jα > 0 for all
α < λ. Let π : λ→

⋃
α<λ ({α} × jα) be a bijection. Form a sequence 〈Tα | α < λ〉

of stationary subsets of S by letting Tα = Sπ(α) for all α < λ. Let C be the set of
γ < λ such that π“γ =

⋃
α<γ({α}× jα). Then C is a club in λ. Using OSR(S), we

can find γ ∈ C ∩ Sλ>ω such that Tα reflects at γ for all α < γ. By our definition of
Tα and our choice of γ, it follows that Sβ,i reflects at γ for all β < γ and i < jβ , so
γ witnesses this instance of clause (4).

It remains to argue that clause (1) implies clause (3). To this end, suppose that
uDSR(<λ, S) holds, and let 〈Sα | α < λ〉 be a sequence of stationary subsets of S.
Define a matrix 〈Tα,i | α < λ, i < α〉 of stationary subsets of S by letting Tα,i = Si
for all α < λ and i < α. By uDSR(<λ, S), we can find an ordinal γ ∈ Sλ>ω and an
unbounded subset F ⊆ γ such that, for all α ∈ F and all i < α, we have that Tα,i
reflects at γ.

We claim that Sβ reflects at γ for all β < γ. To see this, fix β < γ, and let
α = min(F \ (β + 1)). Then Tα,β = Sβ . But, since α ∈ F , we know that Tα,β
reflects at γ. Therefore, γ witnesses this instance of OSR(S). �

We will now explore the relationships between diagonal and simultaneous re-
flection. Let λ be a regular uncountable cardinal. As noted in the introduction,
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uDSR(<κ, λ) implies Refl(<κ, λ), because given any sequence 〈Si | i < κ̄〉, where
κ̄ < κ, one can consider the matrix defined by setting Sα,i = Si for all α < λ
and i < κ̄. It is a more interesting question whether diagonal stationary reflection
implies any amount of simultaneous reflection when this is not explicitly built into
the principle at hand. The following lemma provides one instance in which this is
the case.

Lemma 2.5. Let λ be a regular uncountable cardinal, and let S ⊆ λ be stationary.
Then DSR(1, S) implies Refl(ω, S).

Proof. Assume that DSR(1, S) holds, and let 〈Tn | n < ω〉 be a sequence of sta-
tionary subsets of S. We will find an ordinal δ ∈ Sλ>ω such that, for all n < ω, Tn
reflects at δ. By shrinking the sets if necessary, we may assume that 〈Tn | n < ω〉
is a sequence of pairwise disjoint sets. For each n < ω, let Tn =

⋃̇
l<ωTn,l be a

partition of Tn into stationary sets. Define a function s : ω×ω → ω×ω by setting

s(n, l) =

{
〈0, l + 1〉 if n ≥ l,
〈n+ 1, l〉 if n < l.

Notice that, denoting the p-fold application of s by sp (for p < ω), s is defined in
such a way that the following holds.

Claim 2.6. For any 〈n, l〉 ∈ ω × ω and any m < ω, there is a p ∈ ω such that the
first component of sp(n, l) is m.

Now define a function f : λ→ ω × ω by

f(α) =

{
s(n, l) if α ∈ Tn,l,
〈0, 0〉 if α /∈

⋃
n,l<ω Tn,l.

Note that DSR(1, S) is equivalent to the assertion that, given any sequence 〈Sα | α <
λ〉 of stationary subsets of S, there are γ, F such that

(∗) γ ∈ Sλ>ω, F ⊆ γ is club, and for all α ∈ F , Sα reflects at γ.

Define

Sα = Tf(α)

for α < λ, and let γ and F satisfy (∗) with respect to 〈Sα | α < λ〉.

Claim 2.7. Let α ∈ F . Then there is a β ∈ F with f(β) = s(f(α)).

Proof. Since α ∈ F , Sα ∩ γ is stationary in γ, by (∗). By definition, Sα = Tf(α),
so Tf(α) ∩ γ is stationary in γ. Since F is club in γ, there is a β ∈ Tf(α) ∩ F . By
definition, then, f(β) = s(f(α)), so β is as wished. �

Now let m < ω. We will show that Tm reflects at γ. To see this, pick α ∈ F .
Using Claim 2.6, let p ∈ ω be such that the first component of sp(f(α)) is m, say
sp(f(α)) = 〈m, l〉. By applying Claim 2.7 p times, we see that there is a β ∈ F
such that f(β) = sp(f(α)). By (∗), Sβ ∩ γ is stationary in γ. But Sβ = Tm,l ⊆ Tm,
so Tm reflects at γ, as wished. �

The previous lemma is optimal, in the sense that DSR cannot be replaced with
sDSR, by Theorem 3.19, and in the sense that DSR(1, S)/Refl(ω, S) cannot be
replaced by DSR(µ, S)/Refl(µ+, S) for any uncountable µ, by Theorem 3.28. We
doubt that other instances of this phenomenon are possible, but at present have no
model in which, for example, DSR(1, Sλω) holds but Refl(ω1, S

λ
ω) fails.
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3. Separations

In this section, we prove results separating a number of stationary reflection
principles. Our standard strategy is one that dates back to Kunen’s result indicating
that the existence of a κ-saturated, κ-complete ideal on an inaccessible cardinal κ
does not imply that κ is measurable (or even weakly compact) [10] and has since
been extensively deployed in the context of the investigation of square principles
and stationary reflection principles (cf. [4]).

The basic idea is as follows. To show that a reflection principle P does not imply
a reflection principle P ∗, we start in a model V in which P (or some strengthening
thereof) holds and, moreover, is indestructible under forcing with forcing notions
coming from some class Γ. (In a typical scenario, Γ will consist of all forcings that
are sufficiently directed closed.) We will then design a two-step forcing iteration

S ∗ Ṫ such that:

• Forcing with S introduces a counterexample to P ∗.

• The iteration S ∗ Ṫ is in Γ, and therefore P holds in V S∗Ṫ.
• In V S, forcing with T cannot destroy a potential counterexample to P in

V S∗Ṫ. Therefore, the fact that P holds in V S∗Ṫ can be pulled back to V S.

The model V S will then be a model in which P holds but P ∗ fails.
The properties of S ∗ Ṫ isolated above are in tension with one another. In

particular, in practice, in order for S ∗ Ṫ to be in Γ, it is typically the case that,
in V S, forcing with T necessarily destroys the counterexample to P ∗ introduced
by forcing with S. At the same time, we must ensure that forcing with T cannot
destroy any potential counterexamples to P . A delicate balance must be achieved,
and the choice of S and T is very dependent on the precise nature of the reflection
principles P and P ∗ under consideration.

For simplicity and concreteness, we will primarily be considering reflection prin-
ciples of the form OSR(S), DSR(<κ, S), etc. in which S = Sλω for some regular
cardinal λ ≥ ω2. Our reasons for doing this are twofold. First, these are the re-
flection principles that are implied by forcing axioms such as MM and SCFA, and
therefore we feel they are of the most interest. Second, doing so will simplify mat-
ters at various points due to the fact that the stationarity of subsets of Sλω is always
preserved by countably closed forcing. It is not in general true that the stationarity
of subsets of Sλκ for uncountable κ is preserved by κ+-closed forcing; to arrange for
this, one would have to consider issues of approachability that we would for the
most part rather avoid here. Nonetheless, with a bit more care and attention to
approachability, the reader can adapt our proofs to apply to situations in which S
is of the form Sλ≤κ for certain uncountable κ.

Before we turn to the actual separation results, we recall some facts about inde-
structible reflection principles and forcing that will be used in their proofs.

3.1. Indestructible reflection principles. In this subsection, we indicate how to
arrange for the indestructible reflection principles that will appear as hypotheses in
later theorems. We first deal with the reflection principles at inaccessible cardinals.
Note that, if λ is weakly compact, then OSR(λ) holds. By standard arguments
(see, e.g., [3, Example 16.2]), if λ is a weakly compact cardinal, then there is a
forcing extension in which λ remains weakly compact and its weak compactness is
indestructible under λ-directed closed forcings of size at most λ. In particular, in
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this forcing extension, λ is inaccessible and OSR∗(λ) holds (and hence, by Lemma
2.4, DSR∗(<λ, λ) holds as well).

We now consider indestructible reflection principles at successors of regular car-
dinals.

Theorem 3.1. Suppose that µ is a regular uncountable cardinal and λ > µ is a
weakly compact cardinal. Then there is a µ-closed, λ-cc forcing extension in which

λ = µ+ and OSR∗(Sµ
+

<µ) holds.

Proof. This follows from a straightforward modification of the proof of [8, Theorem
3.22]. A key component of the proof is the fact that the stationarity of subsets of

Sµ
+

<µ is preserved by µ-closed forcing, which holds because, for regular µ, the set Sµ
+

<µ

is in the approachability ideal I[µ+]. For this and other facts on the approachability
ideal, we direct the reader to [5, §3]. �

Remark 3.2. Note that OSR∗(Sµ
+

<µ) is equivalent to each of DSR∗(µ, Sµ
+

<µ) and

uDSR∗(µ, Sµ
+

<µ) by Lemma 2.4. Also, by Theorem 3.1 and a result of Magidor [17],

the existence of a regular uncountable cardinal µ for which OSR∗(Sµ
+

<µ) holds is
equiconsistent over ZFC with the existence of a weakly compact cardinal.

We will now turn to the consistency of very indestructible versions of diagonal
reflection that will include indestructible diagonal reflection at successors of singular
cardinals. We will use the concept of generically supercompact cardinals, due to
Cummings and Foreman.

Definition 3.3. A cardinal κ is generically supercompact1if κ is the successor of a
regular cardinal µ and, for every regular cardinal λ > κ, there is a µ-closed forcing
notion R̃ such that whenever H is R̃-generic, there is, in V [H], an elementary
embedding

j : V ≺M ⊆ V [H]

with:

(1) crit(j) = κ,
(2) j(κ) > λ,
(3) j“λ ∈M ,
(4) sup(j“λ) < j(λ),
(5) M |= cf(λ) = µ.

A cardinal κ is indestructibly generically supercompact if whenever R is a κ-directed
closed notion of forcing and G is R-generic, then κ is generically supercompact in
V [G].

It is well-known by [16] that if κ is supercompact, then there is a forcing extension
in which κ is indestructibly supercompact, meaning that κ is supercompact and
remains so in any further forcing extension obtained by κ-directed closed forcing. If
κ is indestructibly supercompact and µ < κ is a regular uncountable cardinal, then
in the forcing extension obtained by collapsing κ to become the cardinal successor

1Our definition of generic supercompactness differs slightly from what is called generically

supercompact by Foreman [6, Definition 11.2]. The version of indestructible generic supercom-

pactness of Foreman [6, Definition 11.4] implies ours. It should be pointed out that clause (4) in
our definition follows from (1)-(3), since λ is assumed to be regular in V . We kept this clause to

highlight the similarity to Foreman’s versions of these concepts.
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of µ, κ is indestructibly generically supercompact in the sense of [6, Definition 11.4],
which implies our version of indestructible generic supercompactness, as stated in
the footnote to Definition 3.3; see [6, Remark after Def. 11.4].

Lemma 3.4. Suppose that µ is an uncountable regular cardinal and κ = µ+ is
generically supercompact. Then for every regular cardinal λ > κ, the principle
DSR(<κ, Sλω) holds.

Proof. To show that DSR(<κ, Sλω) holds, note that since κ = µ+, the principle is
equivalent to DSR(µ, Sλω). Thus, let a matrix 〈Sα,i | α < λ, i < µ〉 of stationary
subsets of Sλω be given.

By the generic supercompactness of κ, let H be generic for a µ-closed forcing
notion R̃ such that, in V [H], there is an elementary embedding j : V ≺M satisfying
the clauses listed in Definition 3.3.

Note that λ has cofinality µ in V [H], since this is true in M , by clause (5) of

Definition 3.3, and since µ is still regular in V [H], by the µ-closure of R̃. Thus,
ν = sup j“λ has cofinality µ as well. Temporarily fixing α < λ and i < µ, let
us verify that in V [H], j“Sα,i is stationary in ν. First, it follows that Sα,i is still

stationary in V [H], because Sα,i ⊆ Sλω and R̃ is at least ω1-closed – it is well-known
that countably closed forcing preserves stationary subsets of Sλω. Now, to see that
j“Sα,i is stationary in ν, let C ⊆ ν be club, with C ∈ V [H]. We have that j“λ
is closed under limits of cofinality less than µ in V [H], since V and V [H] have
the same sequences of ordinals of length less than µ. Thus, C̄ = j−1“C is closed
under limits of cofinality less than µ. Letting C̄ ′ be the closure of C̄ in λ, C̄ ′ is
club in λ, and hence, as Sα,i is stationary in V [H] and C̄ ′ ∈ V [H], there is a
β ∈ C̄ ′ ∩ Sα,i ⊆ Sλω, so cf(β) < µ. But this means that β ∈ C̄ ∩ Sα,i, and hence
j(β) ∈ C ∩ j“Sα,i.

Since j“Sα,i ⊆ j(Sα,i) ∩ ν, this means that j(Sα,i) reflects at ν in V [H], and

hence in M . Let ~T = j(~S) = 〈Tα,i | α < j(λ), i < µ〉. Since in M , the cofinality
of ν is µ and j“λ is closed under limits of cofinality less than µ, there is in M a
club F ⊆ ν of order type µ with F ⊆ j“λ – recall that j“λ ∈ M , by clause (3) of
Definition 3.3. Thus, ν and F witness that

M |= ∃ν′ < j(λ)∃F ′ (F ′ ⊆ ν′ is club, cf(ν′) = µ

and ∀α ∈ F ′∀i < µ Tα,i reflects at ν′).

This uses the fact that F ⊆ j“λ, so that if α ∈ F , then α = j(ᾱ) for some ᾱ < λ,
and hence Tα,i = j(Sᾱ,i) reflects at ν. The same statement is then true in V about
~S, by the elementarity of j. But this means that, in V there are ν′ < λ and F ′ such
that cf(ν′) = µ, F ′ ⊆ ν′ is club, otp(F ′) = µ, and, for all α ∈ F ′ and all i < µ, Sα,i
reflects at ν′, as wished. �

Corollary 3.5. Suppose that µ is an uncountable regular cardinal and κ = µ+ is
indestructibly generically supercompact. Then if G is generic for a κ-directed closed
notion of forcing and if λ > κ is regular in V [G], then the principle DSR(<κ, Sλω)
holds in V [G].

Remark 3.6. The only way in which we used that assumption that we were only
working with stationary subsets of Sλω in the above proofs is the fact that the
stationarity of subsets of Sλω is preserved by µ-closed forcing. This property is also
satisfied by all stationary subsets of Sλ<µ that lie in the approachability ideal I[λ].
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If ν is a regular cardinal and ν+ < λ, then there is a stationary set Σ ⊆ Sλν with
Σ ∈ I[λ] (cf. [5, §3.3]). Therefore, if ν < µ is a fixed regular cardinal, then we can
find a stationary Σ ⊆ Sλν such that, in the conclusions of Lemma 3.4 and Corollary
3.5, DSR(<κ, Sλω) can be strengthened to DSR(<κ, Sλω ∪ Σ). This will be relevant
below, in particular in Theorem 3.21.

3.2. Forcing preliminaries. In this subsection, we introduce some basic forcing
notions and facts that will be used in our separation results. An essential tool will
be the following canonical forcing notion to destroy the stationarity of a set by
“shooting a club through its complement.”

Definition 3.7. Let λ be an uncountable regular cardinal, and let S ⊆ λ be
unbounded. The forcing notion TS consists of all closed, bounded subsets t of λ
such that t ∩ S = ∅. The ordering is defined by setting, for t0, t1 ∈ TS , t1 ≤TS t0 if
t1 end-extends t0, that is, t1 ∩ sup{ξ + 1 | ξ ∈ t0} = t0.

In many natural cases, the forcing TS is λ-distributive, i.e., forcing with it does
not add any new sequences of ordinals of length less than λ. For example, if λ \ S
is fat, meaning that for every club C ⊆ λ and every α < λ, there is a closed set
D ⊆ C ∩ (λ \ S) of order type α, and if λ is inaccessible, or λ = µ+, where µ is
regular and µ<µ = µ, then TS is λ-distributive and adds a club subset of λ that
is disjoint from S; see [2, Theorem 1]. In particular, this is the case if λ = ω1 and
ω1 \S is stationary. So in these situations, the assumptions of the following lemma
are satisfied. The lemma is entirely standard, but as we could not find this precise
formulation in the literature, we provide a proof for completeness.

Lemma 3.8. Let λ be an uncountable regular cardinal, and let S ⊆ λ be such that
both S and λ \ S are unbounded in λ.

(1) Let G be TS-generic over V . Then
⋃
G is a club subset of λ that is disjoint

from S.
(2) Suppose that TS preserves the fact that λ has uncountable cofinality (in our

applications, TS will be λ-distributive, so this will certainly be the case).
Then, for a set T ⊆ λ such that T \ S ⊆ Sλω, the following are equivalent:
(a) TS “Ť is stationary in λ̌.”
(b) There is a t ∈ TS such that t TS “Ť is stationary in λ̌.”
(c) T \ S is stationary.

Proof. Claim (1) is immediate, since the fact that λ \S is unbounded implies that,
for every α < λ, the set {p ∈ TS | max(p) > α} is dense in TS .

Let us now prove claim (2).
The implication (a) =⇒ (b) is obvious.
For the implication (b) =⇒ (c), let t ∈ TS be as in (b), suppose T is stationary in

V [G], where G is generic for TS with t ∈ G, and assume that T \S is not stationary
in V . Let C be a club subset of λ disjoint from T \ S. Let D =

⋃
G, so D is a

club subset of λ disjoint from S, by (1). Since TS preserves the fact that λ has
uncountable cofinality, C ∩ D is a club subset of λ. But T = (T ∩ S)∪̇(T \ S),
(T ∩ S) ∩D = ∅ and (T \ S) ∩ C = ∅, so T ∩ (C ∩D) = ∅, contradicting the fact
that T is stationary in V [G].

For the implication (c) =⇒ (a), assume that T \ S ⊆ Sλω is stationary, but

suppose that there are a Ċ ∈ V TS and a condition t ∈ T forcing that Ċ is a club
subset of λ̌ disjoint from Ť . Since T \ S is stationary, we can find an elementary
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submodel M ≺ Hθ, where θ is some sufficiently large regular cardinal, such that
the cardinality of M is less than λ, δ = M ∩ λ ∈ T \ S, and M contains all

relevant objects, including t, S, T and Ċ. Since δ ∈ (T \ S) ⊆ Sλω, we can fix
a strictly increasing sequence of ordinals 〈ξn | n < ω〉 cofinal in δ. We can then
simultaneously define sequences 〈tn | n < ω〉 and 〈αn | n < ω〉 by recursion on n so
that the following conditions are satisfied for all n < ω:

(1) ξn < αn < αn+1 < δ,
(2) tn ∈ TS ∩M ,
(3) tn+1 ≤ tn, t0 ≤ t, max(tn) > ξn,

(4) tn TS α̌n ∈ Ċ.

For the construction, in the case n = 0, working in M , since t forces that Ċ is
unbounded in δ, there are a t0 ≤ t and an α0 > ξ0 such that t0 forces that α̌0 ∈ Ċ.
t0 may be chosen so that max(t0) > ξ0, since δ\S is unbounded in δ, by elementarity.
Similarly, if tn, αn have already been defined, then, again working in M , there are
a tn+1 ≤ tn with max(tn+1) > ξn+1 and an αn+1 > ξn+1 such that tn+1 forces that

α̌n+1 ∈ Ċ. This completes the construction, and we can set t∗ = (
⋃
n<ω tn) ∪ {δ}.

Since δ /∈ S, it follows that t∗ ∈ TS , and since t∗ ≤ tn, it follows that t∗ forces
that αn ∈ Ċ, for every n < ω. Since for all n < ω, δ > αn > ξn, it follows that
supn<ω αn = δ. Thus, since t∗ forces that Ċ is closed below λ̌, we have that t∗

forces δ̌ ∈ Ċ ∩ Ť , a contradiction. �

We briefly recall the concept of strategic closure.

Definition 3.9. Let P be a notion of forcing, and let β be an ordinal. In the game
aβ(P), two players collaborate to play a ≤P-descending sequence 〈pα | α < β〉 as
follows. Player II plays at even stages of the game (including limit stages) and in
round 0 must play p0 = 1P. If, during the course of play, a limit ordinal α < β is
reached such that 〈pξ | ξ < α〉 has no lower bound in P (and hence Player II cannot
continue playing), then Player I wins. Otherwise, Player II wins. P is β-strategically
closed if Player II has a winning strategy in the game aβ(P).

Observe that if P is λ-strategically closed for some regular cardinal λ, then P is
λ-distributive.

3.3. Separation results. We are now ready to turn to our various separation
results. Before jumping in to their proofs, we collect a summary of the results here
for the convenience of the reader. Recall the following sequence of implications
from the Introduction, where S is a stationary subset of some regular cardinal λ
and κ < λ is a cardinal:

DSR(<κ, S)⇒ sDSR(<κ, S)⇒ uDSR(<κ, S)⇒ Refl(<κ, S).

We prove here that, in general, none of the arrows in this diagram are reversible
(in fact, our results will be stronger than this). We also prove that the arrows in
the diagram are optimal in the sense that sDSR(<κ, S) does not imply Refl(κ, S)
(and, with one known exception given by Lemma 2.5 and one possible exception
discussed in Question 6.1, neither does DSR(<κ, S)). In particular, we will in
turn construct models showing that, modulo large cardinal hypotheses, each of the
following conjunctions is consistent (see the respective theorems for more precise
statements and the hypotheses that must be satisfied by κ and λ):

• (Theorem 3.10) Refl(<κ, Sλω) ∧ ¬uDSR(1, Sλω);
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• (Theorem 3.15) uDSR(<κ, Sλω) ∧ ¬sDSR(1, Sλω);

• (Theorem 3.19) sDSR(<κ, Sλω) ∧ ¬Refl(κ, Sλω);

• (Theorem 3.21) sDSR(<κ, Sλω) ∧ ¬DSR(1, Sλω);

• (Theorem 3.28) DSR(<κ, Sλω) ∧ ¬Refl(κ, Sλω) (assuming ω1 < κ).

Without further ado, let us jump into the proofs. Our first result shows that even
the strongest simultaneous reflection principles do not imply unbounded diagonal
reflection.

Theorem 3.10. Suppose that λ = λ<λ ≥ ℵ2 is a regular cardinal, 1 < κ ≤ λ,
and Refl∗(<κ, Sλω) holds. Then there is a cofinality-preserving forcing extension in
which

(1) Refl(<κ, Sλω) holds;
(2) uDSR(1, Sλω) fails.

Proof. Let S = Sλω, and let P be the forcing poset whose conditions are all functions
of the form p : γp × γp → 2 such that

• γp < λ;
• for each α < γp, letting Spα = {η < γp | p(α, η) = 1}, we have

– Spα ⊆ S \ (α+ 1);

– for all β ∈ Sγ
p+1
>ω , the set

{α < β | Spα ∩ β is stationary in β}

is bounded below β;
• for all α < β < γp, we have Spα ∩ S

p
β = ∅.

For all p, q ∈ P, we say that q ≤P p if γq ≥ γp and q � (γp × γp) = p.

Claim 3.11. P is λ-strategically closed.

Proof. We describe a winning strategy for Player II in aλ(P). In a run of aλ(P),
the players will produce a ≤P-descending sequence ~p = 〈pη | η < λ〉. For each
η ∈ lim(λ), we will let δη = sup{γpξ | ξ < η} and then let D = {δη | η ∈ lim(λ)}. D
will be a club in λ. Also, for each α < λ, we will let Sα =

⋃
η<λ S

pη
α . Player II will

play in a way that ensures that, for all α < λ, Sα ∩D = ∅. Since Sα ∩ (α+ 1) = ∅
for all α < λ, this amounts to ensuring that, for all η ∈ lim(λ) and all α < δη, we
have δη /∈ Sα.

To start, Player II must play the empty condition as p0. Next, suppose that
η < λ is an odd ordinal and 〈pξ | ξ ≤ η〉 has been played. Player II then plays any
condition pη+1 with γpη+1 > γpη . Finally, suppose that η < λ is a limit ordinal and
〈pξ | ξ < η〉 has been played. Recall that δη = sup{γpξ | ξ < η}. Player II will
play a condition pη with γpη = δη + 1, defined by letting pη � (δη × δη) =

⋃
ξ<η pξ

and pη(α, η) = 0 for all (α, η) ∈ (γpη × γpη ) \ (δη × δη). To see that pη is indeed a
condition, it remains to show that, if cf(δη) > ω, then the set

{α < δη | Spηα ∩ δη is stationary in δη}

is bounded below δη. But, in fact, this set is empty: if cf(δη) > ω, then D ∩ δη =
{δξ | ξ ∈ lim(η)} is a club in δη, and Player II’s previous plays at limit stages have
ensured that, for every α < δη, we have S

pη
α ∩D∩δη = ∅, so S

pη
α ∩δη is nonstationary

in δη. It follows that pη is indeed a condition in P and that this describes a winning
strategy for Player II in aλ(P). �
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Note that it is implicit in this proof that P is countably closed. It is now straight-
forward to see that, for every α < λ, the set Eα = {p ∈ P | α < γp} is a dense open
subset of P. Suppose that G is a P-generic filter over V . It follows that f =

⋃
G is

a function from λ× λ to 2. For α < λ, let Sα = {η < λ | f(α, η) = 1}.
V [G] is our desired model. Since P is λ-strategically closed and of size λ = λ<λ,

we know that V [G] is a cofinality-preserving forcing extension of V . The following
claim will allow us to conclude that the sequence 〈Sα | α < λ〉 witnesses the failure
of uDSR(1, Sλω).

Claim 3.12. In V [G], for all α < λ, Sα is a stationary subset of S.

Proof. Fix α < λ. The fact that Sα is a subset of S follows immediately from
the definition of P. To see that Sα is stationary in V [G], work in V , let Ṡα be

the canonical P-name for Sα, let p ∈ P, and let Ċ be a P-name such that p P
“Ċ is a club in λ̌”. We will find a condition q ≤ p and an ordinal η ∈ S such that
q P “η̌ ∈ Ṡα ∩ Ċ”.

We will define a decreasing sequence of conditions 〈pk | k ≤ ω〉 and an increasing
sequence of ordinals 〈ηk | k < ω〉. To begin, let p0 be any condition extending p
such that γp0 > α. If k < ω and pk has been specified, let pk+1 be any extension
of pk such that there is an ordinal ηk for which

• γpk < ηk < γpk+1 and
• pk+1 P “η̌k ∈ Ċ”.

This is straightforward given the discussion in the paragraph preceding the claim
and the fact that p forces Ċ to be unbounded in λ.

After 〈pk | k < ω〉 has been defined, let η = sup{γpk | k < ω} = sup{ηk | k < ω},
and define a condition pω with γpω = η + 1 by letting

• pω � (η × η) =
⋃
k<ω pk;

• pω(α, η) = 1;
• pω(β, ξ) = 0 for all (β, ξ) ∈ (γpω × γpω ) \ ((η × η) ∪ {(α, η)}).

It is clear that pω is a lower bound for 〈pk | k < ω〉. Also, since pω(α, η) = 1,

we have pω P “η̌ ∈ Ṡα”. Moreover, for all k < ω, pω P “η̌k ∈ Ċ”, so, since pω
extends p and p forces Ċ to be a club, we also have pω P “η̌ ∈ Ċ”, as desired. �

The fact that 〈Sα | α < λ〉 witnesses the failure of uDSR(1, Sλω) in V [G] now
follows immediately from the previous claim and the definition of P. It remains
to verify that Refl(<κ, S) holds. To do this, we need to introduce some auxiliary
forcing notions. In V [G], for all β < λ, let S≥β =

⋃
β≤γ<λ Sγ , and let Tβ = TS≥β

be the forcing to shoot a club through λ disjoint from S≥β , introduced in Definition
3.7.

Claim 3.13. In V , for all β < λ, P ∗ Ṫβ has a dense λ-directed closed subset of
size λ.

Proof. Fix β < λ. For notational simplicity, let us assume that the name Ṫβ is
closed under equivalent names, in the sense that it has the following property:
whenever p ∈ P, ṫ and u̇ are such that (p, ṫ) ∈ P ∗ Ṫβ , u̇ ∈ V P ∩Hλ and p P ṫ = u̇,

it follows that (p, u̇) ∈ P∗ Ṫβ . (In the future, we will assume without comment that
names for forcing posets are closed under equivalent names.) Let Uβ be the set of

conditions in P ∗ Ṫβ of the form (p, ť) with γp = max(t) + 1 > β. We will show that
Uβ has the desired properties.
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First, since λ<λ = λ, it follows that Uβ has size λ.

To see that Uβ is dense, fix (p0, ṫ0) ∈ P∗ Ṫβ . Since P is λ-strategically closed and
hence does not add new bounded subsets of λ, by strengthening p0 if necessary, we
can assume that p0 decides the value of ṫ0, and hence we can assume that ṫ0 is of
the form ť0, where t0 ∈ V . We can also assume that γp0 > max{max(t0), β}. Now
define a condition p ≤ p0 with γp = γp0 + 1 and p(α, γp0) = 0 for all α < γp. Next,
let t = t0 ∪ {γp0}. Then (p, ť) ∈ Uβ extends (p0, ṫ0), showing that Uβ is dense.

We next show that Uβ is λ-directed closed. Note that Uβ is tree-like, i.e., if
u, v, w ∈ Uβ and w extends both u and v, then u and v are ≤Uβ -comparable. It
thus suffices to show that Uβ is λ-closed. To this end, let η < λ be a limit ordinal,
and suppose that 〈(pξ, ťξ) | ξ < η〉 is a strictly decreasing sequence of conditions
from Uβ .

Let δ = sup{γpξ | ξ < η}. We begin by defining a condition p ∈ P extending
〈pξ | ξ < η〉 with γp = δ + 1. We do this by letting p � (δ × δ) =

⋃
ξ<η pξ and

p(α, ε) = 0 for all (α, ε) ∈ (γp × γp) \ (δ × δ). To verify that p is a condition,
it suffices to show that, if cf(δ) > ω, then {α < δ | Spα ∩ δ is stationary in δ} is
bounded below δ. In fact, this set does not contain any ordinals greater than β,
which will yield the desired conclusion since δ > γp0 > β. To see this, note that, if
cf(δ) > ω, then t′ =

⋃
ξ<η tξ is a club in δ and, by the definition of Tβ , it follows

that, for all α with β ≤ α < δ, we have Spα ∩ t′ = ∅, so Spα ∩ δ is nonstationary in δ.
Finally, let t = t′∪{δ}. Then (p, ť) ∈ Uβ is a lower bound for the sequence given

at the outset, thus showing that Uβ is λ-directed closed, which completes the proof
of the claim. �

Since P is λ-strategically closed in V and, for all α < λ, P ∗ Tα has a λ-directed
closed dense subset, it follows that Tα is λ-distributive in V [G]. In particular,
Lemma 3.8 applies, showing that the following are equivalent in V [G], for a sta-
tionary subset T of S:

• Tα “Ť is stationary in λ̌”.
• T \ S≥α is stationary.

Also note that, if α ≤ β < λ and T \S≥α is stationary, then trivially T \S≥β is also
stationary. With this in mind, the following claim will be instrumental in proving
that Refl(<κ, S) holds in V [G].

Claim 3.14. In V [G], for every stationary T ⊆ S, there is α < λ such that T \S≥α
is stationary.

Proof. Fix a stationary T ⊆ S, and suppose to the contrary that, for every α < λ,
T \ S≥α is nonstationary. Then, for each α < λ, there is a club Cα in λ such that
Cα ∩ T ⊆ S≥α. Let C = ∆α<λCα. Then C is a club in λ, so we can fix some
β ∈ C ∩ T . Then β ∈ T ∩

⋂
α<β S≥α = T ∩ S≥β . But, for all γ with β ≤ γ < λ, we

have Sγ ∩ (γ + 1) = ∅, so β /∈ S≥β . This is a contradiction. �

To see that Refl(<κ, S) holds in V [G], fix µ < κ and a sequence 〈Tζ | ζ < µ〉 of
stationary subsets of S. By Claim 3.14, for each ζ < µ, there is αζ < λ such that
Tζ \ S≥αζ is stationary. Let β = sup{αζ | ζ < µ}. Since µ < κ ≤ λ, we have β < λ,
and Tζ \ S≥β is stationary for all ζ < µ. Let H be Tβ-generic over V [G].

By Claim 3.13, in V , P ∗ Ṫβ has a dense λ-directed closed subset of size λ.
Since Refl∗(<κ, S) holds in V , this implies that Refl(<κ, S) holds in V [G ∗H]. For
all ζ < µ, since Tζ \ S≥β is stationary in V [G], we know that Tζ is stationary in
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V [G∗H]. It follows that, in V [G∗H], there is δ ∈ Sλ>ω such that Tζ∩δ is stationary
in δ for all ζ < µ. Since stationarity is downward absolute, the same holds in V [G],
so 〈Tζ | ζ < µ〉 reflects simultaneously in V [G]. Since this sequence was chosen
arbitrarily, it follows that Refl(<κ, S) holds in V [G]. �

We now show that even simultaneous unbounded diagonal reflection does not
imply stationary diagonal reflection. Note that, by Lemma 2.4, the assumption
that κ < λ in the following theorem is necessary.

Theorem 3.15. Suppose that λ = λ<λ ≥ ℵ2 is a regular cardinal, κ is a cardinal
with 1 < κ < λ, and uDSR∗(<κ, Sλω) holds. Then there is a cofinality-preserving
forcing extension in which

(1) uDSR(<κ, Sλω) holds;
(2) sDSR(1, Sλω) fails.

Proof. Let S = Sλω, and let P be the forcing poset whose conditions are all functions
of the form p : γp × γp → 2 such that

• γp < λ;
• for each α < γp, letting Spα = {η < γp | p(α, η) = 1}, we have

– Spα ⊆ S \ (α+ 1);

– for all β ∈ Sγ
p+1
>ω , the set

{α < β | Spα ∩ β is stationary in β}

is nonstationary in β;
• for all α < β < γp, we have Spα ∩ S

p
β = ∅.

For p, q ∈ P, we say that q ≤P p if and only if γq ≥ γp and q � (γp × γp) = p.
Let G be P-generic over V and, for α < λ, let Sα =

⋃
p∈G S

p
α. Arguments exactly

as in the proofs of Claims 3.11 and 3.12 yield the truth of the following statements:

• In V , P is λ-strategically closed.
• In V [G], for every α < λ, Sα is stationary in λ. Moreover, if we let S−1 =
S \ (

⋃
α<λ Sα), then S−1 is stationary as well.

In V [G], let T be the forcing notion whose conditions are all closed, bounded
subsets t of λ such that, for all α ∈ t, we have t∩Sα = ∅. As before, these conditions
are ordered by end-extension. Let Ṫ ∈ V be a canonical P-name for T.

Claim 3.16. In V , P ∗ Ṫ has a dense λ-directed closed subset of size λ.

Proof. Define U to consist of all conditions in P ∗ Ṫ that are of the form (p, ť) with
the property that γp = max(t) + 1. Since λ<λ = λ, the cardinality of U is λ.

To see that U is dense, fix (p0, ṫ0) ∈ P ∗ Ṫ. Since P is λ-strategically closed, we
can assume, by extending p0 if necessary, that p0 decides ṫ0, and hence we may
assume that ṫ0 is of the form ť0. We may also assume that γp0 > max(t0). Now
define a condition p ≤P p0 by letting γp = γp0 + 1, p � (γp0 × γp0) = p0, and
p(α, γp0) = p(γp0 , α) = 0 for all α ≤ γp. Next, let t = t0 ∪ {γp0}. Then (p, ť) is a
condition in U extending (p0, ṫ0), showing that U is dense.

We next show that U is λ-directed closed. Since U is tree-like, it suffices to show
λ-closure. To this end, let η < λ be a limit ordinal, and suppose that 〈(pξ, ťξ) | ξ <
η〉 is a strictly decreasing sequence of conditions from U. Let δ = sup{γpξ | ξ <
η} = sup{max(tξ) | ξ < η}.
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We first construct a condition p ∈ P such that p is a lower bound for 〈pξ | ξ < η〉
and γp = δ + 1. To do this, simply let p � (δ × δ) =

⋃
ξ<η pξ and p(α, ζ) = 0 for all

(α, ζ) ∈ (γp × γp) \ (δ× δ). The only nontrivial statement to check to verify that p
is indeed a condition is that, if cf(δ) > ω, then the set

X = {α < δ | Spα ∩ δ is stationary in δ}

is nonstationary in δ. But notice that, if cf(δ) > ω, then t∞ =
⋃
ξ<η tξ is a club

in δ and, for all α ∈ t∞, we have t∞ ∩ Spα = ∅. Therefore, X is disjoint from t∞
and hence nonstationary in δ. Letting t = t∞ ∪ {δ}, it now follows that (p, ť) is a
condition in U that is a lower bound for the given sequence. �

V [G] is our desired model. It is clear from what has been written that, in V [G],
〈Sα | α < λ〉 is a witness to the failure of sDSR(1, S). To verify that uDSR(<κ, S)
holds, the following claim will be useful.

Claim 3.17. In V [G], suppose that −1 ≤ ε < λ, R is a stationary subset of
Sε, and t0 ∈ T is a condition such that ε /∈ t0 and max(t0) > ε. Then t0 T
“Ř is stationary in λ̌”.

Proof. Work in V [G]. Let t ≤T t0 be arbitrary, and let Ċ be a T-name forced by t

to be a club in λ. It will suffice to find r ≤T t and δ ∈ R such that r T “δ̌ ∈ Ċ”.
We will proceed much as in the proof of Lemma 3.8. Let θ be a sufficiently large

regular cardinal, let C be a fixed well-ordering of Hθ, and let M be an elementary
submodel of (Hθ,∈,C) of size less than λ such that

• {T, t, Ċ, R} ⊆M ;
• δ := sup(M ∩ λ) ∈ R.

Let 〈δn | n < ω〉 enumerate a cofinal subset of M ∩ λ. Now, working at each step
inside M , recursively construct a decreasing sequence of conditions 〈rn | n < ω〉
from T ∩M together with an increasing sequence 〈ξn | n < ω〉 of ordinals from
M ∩ λ such that

• r0 ≤T t;
• for each n < ω, we have δn < min{max(rn), ξn};
• for each n < ω, rn T “ξ̌n ∈ Ċ”.

The construction is straightforward, using the fact that t forces Ċ to be unbounded
in λ. Notice that δ = sup{max(rn) | n < ω} = sup{ξn | n < ω}. Also recall that
δ ∈ R ⊆ Sε. Since ε /∈ t0 and max(t0) > ε, it follows that r := {δ} ∪

⋃
n<ω rn is

a condition in T that is a lower bound for 〈rn | n < ω〉 and hence extends t. For

each n < ω, r T “ξ̌n ∈ Ċ”, so, since r forces Ċ to be a club in λ, we see that
r T “δ̌ ∈ Ċ ∩ Ř”, as desired. �

Note also that, letting S≥α =
⋃
α≤β<λ Sβ for each α < λ, the proof of Claim

3.14 applies in this case as well to yield the fact that, in V [G], for every stationary
R ⊆ S, there is α < λ such that R \ S≥α is stationary. But for such an α, we then
have R \S≥α ⊆

⋃
−1≤β<α Sβ , and hence, by the completeness of the nonstationary

ideal, there is in fact some −1 ≤ β < α such that R ∩ Sβ is stationary.
To see that uDSR(<κ, S) holds in V [G], fix a matrix 〈Rα,i | α < λ, i < jα〉 of

stationary subsets of S such that, for each α < λ, we have jα < κ. We will find
γ ∈ Sλ>ω and an unbounded F ⊆ γ such that, for all α ∈ F and all i < jα, we have
that Rα,i reflects at γ.
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For each α < λ and i < jα, let β(α, i) < λ be such that Rα,i∩Sβ(α,i) is stationary.
Set Bα = {β(α, i) | i < jα}, and let 〈`αξ | ξ < θα〉 enumerate Bα in increasing order.

Fix a stationary set Σ∗ ⊆ λ on which the map α 7→ (jα, θα) is constant, with value
(j, θ).

Let ρ be the least ordinal below θ such that the set {`αρ | α ∈ Σ∗} is unbounded
in λ, if such an ordinal exists, and let ρ = θ otherwise. For all ξ < ρ, then, there
is βξ < λ such that `αξ < βξ for all α ∈ Σ∗. Let ε = supξ<ρ βξ < λ, and let

t = {ε} ∈ T.

Claim 3.18. For all ζ < λ, the set

Dζ :=
{
t∗ ∈ T | ∃α ∈ Σ∗ \ ζ

[
∀i < j

(
t∗ T “Řα,i is stationary in λ̌”

)]}
is dense in T below t.

Proof. Fix ζ < λ and t′ ≤T t. Fix α ∈ Σ∗ such that α ≥ ζ and, if ρ < θ, then
`αρ > max(t′). Now find γ > max(t′) with sup{`αξ | ξ < θ} < γ < λ and γ ∈ S−1,

and let t∗ = t′ ∪ {γ}. Then t∗ is a condition in T extending t′, and we claim that,
for all i < j, t∗ T “Řα,i is stationary in λ̌”, and hence t∗ ∈ Dζ .

To see this, fix i < j, and let ξ < θ be such that β(α, i) = `αξ . If ξ < ρ, then

β(α, i) < ε = min(t∗). Therefore, since Rα,i ∩ Sβ(α,i) is stationary, Claim 3.17
implies that t∗ preserves the stationarity of Rα,i ∩ Sβ(α,i) and hence, a fortiori, of
Rα,i itself. If, on the other hand, ρ ≤ ξ < θ, then we have

max(t′) < `αρ ≤ `αξ = β(α, i) < γ = min(t∗ \ (max(t′) + 1)).

In particular, we have β(α, i) /∈ t∗ and β(α, i) < max(t∗), so Claim 3.17 again
implies that t∗ preserves the stationarity of Rα,i. �

Let H be T-generic over V [G] with t ∈ H. Claim 3.18 implies that, in V [G ∗H],
the set

A := {α ∈ Σ∗ | for all i < j, Rα,i is stationary in λ}
is unbounded in λ. Let f : λ −→ A be the monotone enumeration of A, and let C
be the set of closure points of f , that is, the set of η < λ such that f“η ⊆ η. Note
that C is a club in λ. Note also that since, in V , uDSR∗(<κ, S) holds and P∗Ṫ has a
dense λ-directed closed subset of cardinality λ, it follows that uDSR(<κ, S) holds in
V [G ∗H]. Therefore, we can apply this principle to the matrix 〈R′ξ,i | ξ < λ, i < j〉
defined by R′ξ,i = Rf(ξ),i ∩ C, yielding an ordinal γ ∈ Sλ>ω and an unbounded set

F ′ ⊆ γ such that, for all ξ ∈ F ′ and all i < j, R′ξ,i reflects at γ, i.e., Rf(ξ),i ∩ C
reflects at γ. In particular, γ ∈ C, and hence F = f“F ′ is an unbounded subset of
γ. Moreover, since V [G] and V [G∗H] have the same bounded subsets of λ, we also
know that F ∈ V [G] and, in V [G], for all α ∈ F and all i < j, Rα,i∩γ is stationary
in γ. We have thus found γ and F as desired, so we have shown that uDSR(<κ, S)
holds in V [G]. �

We now show that stationary diagonal reflection implies no more simultaneous
reflection than explicitly stated. Recall that this is not true of the full diagonal
reflection principle, by Lemma 2.5.

Theorem 3.19. Suppose that 1 < κ < λ = λ<λ are cardinals, λ ≥ ℵ2 is regular,
and either κ ≥ ω and DSR∗(<κ, Sλω) holds, or κ < ω and DSR∗(κ, Sλω) holds. Then
there is a cofinality-preserving forcing extension in which

(1) sDSR(<κ, Sλω) holds;
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(2) Refl(κ, Sλω) fails.

Proof. Let S = Sλω, and let P be the forcing poset whose conditions are all functions
of the form p : κ× γp → 2 such that

• γp < λ;
• for each ` < κ, letting Sp` = {η < γp | p(`, η) = 1}, we have

– Sp` ⊆ S;

– for all β ∈ Sγ
p+1
>ω , there is ` < κ such that Sp` ∩ β is nonstationary in

β;
• for all ` < `∗ < κ, we have Sp` ∩ S

p
`∗ = ∅.

For p, q ∈ P, we say that q ≤P p if and only if γq ≥ γp and q � (κ× γp) = p.
Let G be P-generic over V and, for ` < κ, let S` =

⋃
p∈G S

p
` . By standard

arguments analogous to those in the proofs of Claims 3.11 and 3.12, it follows that

• in V , P is λ-strategically closed;
• in V [G], for every ` < κ, S` is stationary in λ. Moreover, if we let S−1 =
S \ (

⋃
`<κ S`), then S−1 is stationary as well.

In V [G], for each ` < κ, let T` = TS` be the forcing notion to shoot a club

through λ disjoint from S` introduced in Definition 3.7. Let Ṫ` ∈ V be a canonical
P-name for T`. By arguments like those in the proof of Claim 3.13, in V , P ∗ Ṫ`
has a dense λ-directed closed subset of cardinality λ.
V [G] is our desired model. It follows from the previous two paragraphs that

the sequence 〈S` | ` < κ〉 witnesses the failure of Refl(κ, S) in V [G]. To see that
sDSR(<κ, S) holds, let 〈Tα,i | α < λ, i < jα〉 be a matrix of stationary subsets of S,
with jα < κ for all α < λ. Notice that, for every stationary subset T ⊆ S, there is
at most one ` < κ for which T \S` is nonstationary. Therefore, for all α < λ, there
is some `(α) < κ such that, for all i < jα, we have that Tα,i \ S`(α) is stationary.
In particular, by Lemma 3.8, each Tα,i remains stationary after forcing over V [G]
with T`(α).

Find a stationary Σ ⊆ S−1 and a fixed ` < κ such that `(α) = ` for all α ∈ Σ.
Let H be T`-generic over V [G]. For all α ∈ Σ and i < jα, Tα,i remains stationary
in V [G ∗ H]. Moreover, since Σ is a subset of S−1 and hence disjoint from S`, Σ
also remains stationary in V [G ∗ H]. Since, in V , either κ ≥ ω and DSR∗(<κ, S)

holds, or κ < ω and DSR∗(κ, S) holds, and since P ∗ Ṫ` has a dense λ-directed
closed subset of cardinality λ, it follows that the corresponding diagonal reflection
principle holds in V [G ∗H].

In V [G ∗ H], form a matrix 〈T ∗α,i | α < λ, i < j∗α〉 as follows. For α ∈ Σ, let
j∗α = jα + 1, let T ∗α,i = Tα,i for i < jα, and let Tα,jα = Σ. For α ∈ λ \ Σ, let
j∗α = 1 and Tα,0 = Σ. We can apply our diagonal reflection principle to this matrix
in V [G ∗H], finding γ ∈ Sλ>ω and a club F ∗ ⊆ γ such that, for all α ∈ F ∗ and all
i < j∗α, we have that T ∗α,i reflects at γ. Since Σ ∈ {T ∗α,i | i < j∗α} for every α < λ,
it follows that Σ reflects at γ, and hence F := Σ ∩ F ∗ is stationary in γ as well.
Moreover, for each α ∈ F and each i < jα, we know that Tα,i = T ∗α,i reflects at γ.
This is downward absolute to V [G] and, since V [G] and V [G ∗ H] have the same
bounded subsets of λ, we know that F is in V [G]. Therefore, in V [G], γ and F
witness this instance of sDSR(<κ, S). �

Corollary 3.20. Suppose that λ = λ<λ ≥ ℵ2 is a regular cardinal and that
DSR∗(<ω, Sλω) holds. Then there is a cofinality-preserving extension in which
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(1) sDSR(<ω, Sλω) holds;
(2) DSR(1, Sλω) fails.

Proof. This follows immediately from Theorem 3.19 and Lemma 2.5. �

We now prove a more general version of the above corollary, indicating that
simultaneous stationary diagonal reflection does not imply any amount of the full
diagonal stationary reflection principle. Recall that, by the discussion in Subsection
3.1, the hypothesis of the following theorem can be arranged from a weakly compact
cardinal if λ is to be inaccessible or the successor of a regular cardinal, or from a
supercompact cardinal if λ is to be the successor of a singular cardinal.

Theorem 3.21. Suppose that κ < λ are infinite cardinals such that κ+ < λ and
λ<λ = λ. Suppose moreover that there is a stationary subset Σ ⊆ Sλ≥κ such that

DSR∗(<κ, Sλω ∪Σ) holds. Then there is a cofinality-preserving forcing extension in
which

(1) sDSR(<κ, Sλω) holds;
(2) DSR(1, Sλω) fails.

Proof. Let S = Sλω, and let P be the forcing poset whose conditions are all functions
of the form p : γp × γp → 2 such that

• γp < λ;
• for each α < γp, letting Spα = {η < γp | p(α, η) = 1}, we have

– Spα ⊆ S \ (α+ 1);

– for all β ∈ Sγ
p+1
>ω , the set

{α < β | Spα ∩ β is nonstationary in β}
is stationary in β;

• for all α < α∗ < γp, we have Spα ∩ S
p
α∗ = ∅.

Let G be P-generic over V and, for α < λ, let Sα =
⋃
p∈G S

p
α. By arguments as in

the proofs of Claims 3.11 and 3.12, we have the following facts.

• In V , P is λ-strategically closed.
• In V [G], for every α < λ, Sα is stationary in λ. Moreover, if we let S−1 =
S \ (

⋃
α<λ Sα), then S−1 is stationary as well.

As a result, by the definition of conditions in P, 〈Sα | α < λ〉 witnesses the
failure of DSR(1, Sλω) in V [G].

In V [G], we define a poset T designed to destroy the stationarity of Sα for a
generic ω-closed unbounded set of α-s. Recall that a set X of ordinals is ω-closed
if, for all ordinals α, if cf(α) = ω and sup(X ∩ α) = α, then α ∈ X. When
defining similar forcings in previous arguments, it was sufficient to force a single
club simultaneously destroying the stationarity of many stationary sets, but here
it will pay dividends to more carefully add a distinct club disjoint from each Sα.
To be more precise, conditions in T are pairs t = (ct, dt) satisfying the following
requirements:

• ct is an ω-closed bounded subset of λ;
• dt is a function with domain ct such that, for all α ∈ ct, dt(α) is a closed

bounded subset of λ with dt(α) ∩ Sα = ∅.
If t and s are conditions in T, then s ≤T t if and only if

• cs end-extends ct; and
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• for all α ∈ ct, ds(α) end-extends dt(α).

In V , let Ṫ be a P-name for T.

Claim 3.22. In V , P ∗ Ṫ has a dense λ-directed closed subset of size λ.

Proof. Define U to be the set of (p, ť) ∈ P∗ Ṫ such that, letting t = (ct, dt), we have

• ct has a largest element;
• γp = max(ct) + 1;
• for all α ∈ ct, γp = max(dt(α)) + 1.

The verification that U is a dense λ-directed closed subset of P ∗ Ṫ of cardinality
λ is almost the same as that in the proof of Claim 3.16, here using the fact that,
if X is an ω-closed set of ordinals, β is an ordinal of uncountable cofinality, and
sup(X ∩ β) = β, then X ∩ β is stationary in β. We therefore leave the rest of the
proof to the reader. �

Work for now in V [G], which will be our desired model. If t ∈ T, then T/t
denotes the set {s ∈ T | s ≤ t}, considered as a sub-poset of T. Given a condition
t ∈ T and an ε < λ, let t \ ε denote the condition (ct \ ε, dp � (ct \ ε)). Furthermore,
define a function πt,ε : T/t→ T/(t \ ε) by letting πt,ε(s) = s \ ε for all s ∈ T/t.

Claim 3.23. If t ∈ T, ε < λ, and ct \ ε is non-empty, then πt,ε is a projection2

from T/t to T/(t \ ε).

Proof. It is clear that πt,ε is order-preserving and maps the top element of T/t,
namely t, to the top element of T/(t \ ε), namely t \ ε. It remains to show that, for
all s ∈ T/t and all r ≤ (s \ ε), there is s∗ ≤ s such that (s∗ \ ε) ≤ r. To this end,
fix such s and r. Since ct \ ε 6= ∅ and s ≤ t, it follows that for all α ∈ cr \ cs, we
have α ⊇ cs. Define a condition s∗ ∈ T as follows:

• cs∗ = cr ∪ cs;
• for all α ∈ cr, ds∗(α) = dr(α);
• for all α ∈ cs \ cr, ds∗(α) = ds(α).

Note that cs
∗ \ ε = cr. It is now easily verified that s∗ is a condition in T extending

s and that s∗ \ ε extends r. �

Claim 3.24. Suppose that, in V [G], we have t ∈ T, ε < λ, and a stationary R ⊆ λ
such that

• ct \ ε 6= ∅; and
• t T “Ř is stationary in λ̌”.

Then t \ ε T “Ř is stationary in λ̌”.

Proof. This is an instance of a more general fact: if P and Q are posets with a
projection π : Q −→ P, A is some set, ϕ(x) is a statement that goes down to inner
models, and for some q ∈ Q, q Q ϕ(Ǎ), then π(q) P ϕ(Ǎ). If not, let p ≤ π(q) be
such that p P ¬ϕ(Ǎ). Let q∗ ≤ q be such that π(q∗) = p. Let I 3 q∗ be Q-generic.
Then ϕ(A) holds in V [I], since q∗ ≤ q. But π“I generates a V -generic filter Ī for
P, and π(q∗) = p ∈ Ī. So ϕ(A) fails in V [Ī]. But V [Ī] ⊆ V [I], so, since ϕ(A) holds
in V [I], it must hold in V [Ī], a contradiction. �

Claim 3.25. Suppose that −1 ≤ ε < λ, R is a stationary subset of Sε, and t ∈ T
is a condition such that ε /∈ ct and sup(ct) > ε. Then t R “Ř is stationary in λ̌”.

2See, e.g., [1, p. 335].
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Proof. The proof is almost exactly the same as that of Claim 3.17, so we leave it
to the reader. �

It remains to verify that sDSR(<κ, S) holds in V [G]. To this end, let 〈Tα,i | α <
λ, i < jα〉 be a matrix of stationary subsets of S, with jα < κ for all α < λ. As
in the proof of Theorem 3.15, for each α < λ and i < jα, we can find β(α, i) such
that −1 ≤ β(α, i) < λ and Tα,i ∩ Sβ(α,i) is stationary.

For each α < λ, set

• Xα = {β(α, i) | i < jα};
• X−α = Xα ∩ α;
• X+

α = Xα \ α.

Note that |Xα| < κ for all α < λ. Therefore, recalling that Σ ⊆ Sλ≥κ, we have

sup(X−α ) < α for all α ∈ Σ. Then the function α 7→ sup(X−α ) is regressive on
the stationary set Σ and clearly continues to be in any forcing extension by T.
(Recall that P ∗ Ṫ has a dense λ-directed closed subset and hence preserves the
stationarity of all stationary subsets of λ that are in V ; in particular, it preserves
the stationarity of Σ). Therefore, we can find ε < λ and t0 ∈ T such that t0 forces
that Rε := {α ∈ Σ | sup(X−α ) = ε} is stationary in λ. By extending t0 if necessary,
we may assume that ct0 \ (ε + 1) 6= ∅. Let t = t0 \ (ε + 1). Then we have the
following:

• By Claim 3.24, t T “Řε is stationary”.
• By Claim 3.25, for all α ∈ Rε and all i < jα such that β(α, i) < α,
t T “Ťα,i is stationary”.

Let Ṙ∗ be a T-name for the set of α ∈ Rε such that, for all i < jα, Tα,i is stationary
in λ (after forcing with T).

Claim 3.26. t T “Ṙ∗ is stationary”.

Proof. Fix s0 ≤ t and a T-name Ė for a club in λ. We must find s ≤ s0 and α ∈ Rε
such that s T “α̌ ∈ Ė ∩ Ṙ∗”. Let H be T-generic over V [G] with s0 ∈ H, and

let E be the realization of Ė. Let c =
⋃
s∈H c

s and define a function d on c by
letting d(α) =

⋃
s∈H d

s(α). For each α ∈ E, let rα ∈ H be such that rα ≤ s0 and

rα T “α̌ ∈ Ė”, and let ξα < λ be such that crα ⊆ ξα. Then the set

E∗ = {α ∈ lim(E) | for all η ∈ E ∩ α, ξη < α}
is a club in λ. Since s0 ≤ t and hence t ∈ H, we know that Rε is stationary in
V [G ∗H], so we can find α ∈ E∗ ∩ Rε. We can also find a γ < λ large enough so
that, for all η < α and all β ∈ crη , we have drη (β) ⊆ γ. Now define s1 = (cs1 , ds1)
by letting cs1 = c ∩ α and, for all β ∈ c, letting ds1(β) = d(β) ∩ (γ + 1). Note that

s1 ∈ T and s1 ≤ rη for all η < α. Therefore, s1 forces that α is a limit point of Ė.
Now let δ < λ be large enough so that α < δ and X+

α ⊆ δ. Define a condition
s ≤ s1 by letting cs = cs1 ∪ {δ}, ds � cs1 = ds1 , and ds(δ) = ∅. Notice that
cs ∩ ε = cs ∩ [α, δ) = ∅, and therefore Xα ∩ cs = ∅. Moreover, δ ∈ cs and every
element of Xα is less than δ. Therefore, by Claim 3.25,

s T “for all i < jα, Ťα,i is stationary”.

Therefore, s T “α̌ ∈ Ė ∩ Ṙ∗, as desired. �

Now let H be T-generic over V [G] with t ∈ H, and let R∗ be the interpretation

of Ṙ∗. Define a matrix 〈T ∗α,i | α < λ, i ≤ jα〉 of stationary subsets of Sλω ∪ Σ as
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follows. First, for all α < λ, let T ∗α,jα = R∗. Next, if α ∈ R∗, then let T ∗α,i = Tα,i
for all i < jα. Finally, if α ∈ λ \R∗, then simply let T ∗α,i = Sλω for all i < jα.

Since DSR∗(<κ, Sλω∪Σ) holds in V and P∗Ṫ has a dense λ-directed closed subset
of size λ, DSR(<κ, Sλω∪Σ) holds in V [G∗H]. Therefore, we can find γ ∈ Sλ>ω and a
club F ∗ in γ such that, for all α ∈ F ∗ and all i ≤ jα, T ∗α,i reflects at γ. In particular,
R∗ reflects at γ, so F = F ∗ ∩R∗ is stationary in γ. Moreover, for all α ∈ F and all
i < jα, we know that T ∗α,i = Tα,i, so Tα,i reflects at γ. But stationarity is downward
absolute and, since T is λ-distributive in V [G], we have F ∈ V [G], so, in V [G], γ
and F witness this instance of sDSR(<κ, Sλω). �

Remark 3.27. We do not know if the requirement that κ+ < λ is necessary in the
statement of the above theorem. It was used in our proof to allow for the existence
of a stationary Σ ⊆ Sλ≥κ that reflects.

Recall that Lemma 2.5 showed that DSR(1, S) implies Refl(ω, S). The next
theorem provides a limitation to the extent to which this can be generalized. It also
shows that Theorem 5.2, stating that sDSR(<κ, S) implies the failure of �(λ,<κ)
(where 1 < κ < λ and S ⊆ λ is stationary), is in a sense optimal. The assumptions
of the theorem hold, for example, if κ is indestructibly generically supercompact
and S = Sλω, or if κ is indestructibly supercompact and S = Sλ<κ.

Theorem 3.28. Suppose that ω1 < κ < λ are regular cardinals, S ⊆ λ is station-
ary, and DSR(<κ, S) holds. Suppose moreover that all of these statements continue
to hold in any forcing extension obtained by a κ-directed closed forcing notion that
preserves cofinalities up to λ. Then there is such a forcing extension in which

(1) DSR(<κ, S) holds;
(2) Refl(κ, S′) fails for all stationary S′ ⊆ λ.

In fact, in this forcing extension, we have �ind(λ, κ), a strengthening of �(λ, κ)
(see Definition 5.1).

Proof. Under the assumptions of the theorem, there is a forcing notion S that is
κ-directed closed and λ-strategically closed, such that letting G be S-generic over
V , a strengthening of �(λ, κ) called �ind(λ, κ) holds in V [G]; see [8, Lemma 3.14].
We do not need the precise definition of �ind(λ, κ) here. It suffices for the present
purposes to know that a �ind(λ, κ)-sequence is in particular a full �(λ, κ)-sequence.
So by Theorem 1.5, it follows that Refl(κ, S′) fails for every stationary S′ ⊆ λ in
V [G]. But by assumption, DSR(<κ, S) continues to hold. �

4. Diagonal stationary reflection and the strong reflection
principle

Let us now make a connection to Todorčević’s strong reflection principle. It will
be useful to recall some definitions and facts.

Definition 4.1. Let γ be a regular uncountable cardinal, and let X ⊇ γ be a set.
For a set A ⊆ γ, let

lift(A, [X]ω) = {x ∈ [X]ω | sup(x ∩ γ) ∈ A}.
Now let S ⊆ [X]ω be stationary. Then S is projective stationary if for every
stationary set A ⊆ ω1, the set

S ∩ lift(A, [X]ω)
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is stationary.
If W ⊆ X ⊆ Y , then we write

S ↑ [Y ]ω = {y ∈ [Y ]ω | y ∩X ∈ S}

and

S ↓ [W ]ω = {x ∩W | x ∈ S}.
The strong reflection principle (SRP) is the assertion that for every regular cardinal
θ ≥ ω2, if S ⊆ [Hθ]

ω is projective stationary, then there is a continuous ∈-chain
〈Mi | i < ω1〉 of countable elementary submodels of 〈Hθ,∈〉 such that for all i < ω1,
Mi ∈ S.

Fact 4.2. Let W ⊆ X ⊆ Y , and let S ⊆ [X]ω be stationary.

(1) S ↓ [W ]ω and S ↑ [Y ]ω are stationary.
(2) If ω2 ⊆ W and S is projective stationary, then S ↓ [W ]ω and S ↑ [Y ]ω are

projective stationary.
(3) If S is projective stationary and C ⊆ [X]ω is club, then S ∩C is projective

stationary.

Proof. Item (1) is well-known; see, for example, [15]. For item (2), we refer the
reader to [9, Ex. 37.17]. Item (3) is immediate: if A ⊆ ω1 is stationary, then
(S ∩ C) ∩ lift(A, [X]ω) = (S ∩ lift(A, [X]ω)) ∩ C is stationary. �

The following lemma is essentially due to Larson [14]. The original statement and
proof, though, have a confusing typo and omit one implication, so we reformulate
and prove it here. We use the notation of Definition 3.7; compare to Lemma 3.8.

Lemma 4.3. Let γ > ω1 be regular, X ⊇ γ a set, A ⊆ γ stationary and S ⊆ [X]ω

also stationary, such that γ \A is unbounded in γ and TA is countably distributive
(this is the case, for example, if A ⊆ Sγω and Sγω \ A is stationary). Then the
following are equivalent:

(1) S \ lift(A, [X]ω) is stationary.
(2) TA preserves the stationarity of S.
(3) There is a condition p ∈ TA that forces that Š is stationary.

Proof. (1) =⇒ (2): Suppose that (1) holds, and assume towards a contradiction
that (2) fails. Let τ be a TA-name that is forced by some condition p ∈ TA to be
a club subset of [X]ω disjoint from S. By (1), S \ lift(A, [X]ω) is stationary. Let
η be a regular cardinal large enough that Hη contains all the relevant parameters.
By Fact 4.2, (S \ lift(A, [X]ω)) ↑ [Hη]ω is stationary, so we can pick a countable
elementary submodel N ≺ 〈Hη,∈, p, A, S, τ〉 such that N ∩ X ∈ S \ lift(A, [X]ω).
Thus, p,A, S, τ ∈ N , N ∩ X ∈ S and ν = sup(N ∩ γ) /∈ A. Let g ⊆ TA ∩ N be
N -generic for TA, with p ∈ g. Since ν = sup(

⋃
g) = sup(N ∩ γ) /∈ A, it follows

that q = (
⋃
g) ∪ {ν} ∈ TA. Also, there is a ⊆-increasing sequence 〈xn | n < ω〉 of

elements of τg such that
⋃
n<ω xn = N ∩X. But if q ∈ G, where G is TA-generic

over V , then τg ⊆ τG, and so N ∩X ∈ τG ∩ S, a contradiction.
(2) =⇒ (3): trivial.
(3) =⇒ (1): Suppose that (3) holds, and assume towards a contradiction that

(1) fails. The failure of (1) means that there is a club C ⊆ [X]ω disjoint from
S \ lift(A, [X]ω), i.e.,

(∗) S ∩ C ⊆ lift(A, [X]ω).
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Using (3), let G ⊆ TA be generic so that S is stationary in V [G]. Hence, S ∩ C is
stationary in V [G].

Let D =
⋃
G, so D ⊆ γ is club and D ∩A = ∅. Since TA preserves the fact that

γ has uncountable cofinality, we can pick x ∈ S ∩C with sup(x∩ γ) ∈ D. But then
sup(x ∩ γ) /∈ A, which contradicts (∗). �

It follows from [14, Theorem 4.6] that, assuming the consistency of Martin’s
Maximum, SRP does not imply OSR(Sω2

ω ), which by Lemma 2.4 is equivalent to
each of DSR(ω1, S

ω2
ω ), sDSR(ω1, S

ω2
ω ), and uDSR(ω1, S

ω2
ω ). We now show that one

can do slightly better at regular cardinals λ > ω2 by adapting the proof of Theorem
3.10 to prove that SRP does not imply uDSR(1, Sλω). The hypothesis of the following
theorem follows from Martin’s Maximum.

Theorem 4.4. Let λ > ω2 be a regular cardinal, and suppose that SRP holds and
continues to hold in any forcing extension obtained by a λ-directed closed forcing
notion. Then there is a λ-strategically closed forcing notion which produces forcing
extensions in which

(1) SRP continues to hold, but
(2) uDSR(1, Sλω) fails.

Proof. We use the forcing notion P of Theorem 3.10. Let G be P-generic over V .
It was shown in the proof of that theorem that P is λ-strategically closed and adds
a sequence 〈Sα | α < λ〉 of stationary subsets of Sλω which is a counterexample

to uDSR(1, Sλω). Recall that, for α < λ, we set S≥α =
⋃
α≤β<λ Sβ and let Ṫα be

a canonical name for the forcing TS≥α . We have seen that P ∗ Ṫα has a dense

λ-directed closed subset. Other crucial properties of the sequence ~S, which we will
use in the proof of the following claim, are that for α < λ, Sα ∩ (α + 1) = ∅ and
that for α < β < λ, Sα ∩ Sβ = ∅. Work now in V [G].

Claim 4.5. Let θ ≥ λ be a regular cardinal, and let S ⊆ [Hθ]
ω be stationary. Then

there is an α < λ such that Tα preserves the stationarity of S.

Proof. If not, then, by Lemma 4.3, for every α < λ, the set

Bα = {x ∈ S | sup(x ∩ λ) /∈ S≥α}

is not stationary. Thus, for all α < λ, let Cα ⊆ [Hθ]
ω be a club disjoint from Bα.

By normality of the generalized club filter, there is a club D ⊆ [Hθ]
ω with the

property that

∀x ∈ D∀ξ ∈ x ∩ λ x ∈ Cξ.

Now let x ∈ S ∩ D, and set σ = sup(x ∩ λ). For all ξ ∈ x ∩ λ, x ∈ Cξ. So since
x ∈ S and Cξ ∩Bξ = ∅, it follows that σ ∈ S≥ξ. So, since x ∩ λ is cofinal in σ and
~S is pairwise disjoint, it follows that σ ∈ S≥σ. But for ζ < λ with ζ ≥ σ, we have
Sζ ∩ (σ + 1) ⊆ Sζ ∩ (ζ + 1) = ∅, so it cannot be that σ ∈ S≥σ. �

Next, we are going to show that SRP holds in V [G]. So, still working in V [G],
let S ⊆ [Hθ]

ω be projective stationary, where θ ≥ ω2 is a regular cardinal.

Claim 4.6. There is an α < λ such that Tα preserves the projective stationarity
of S.



SEPARATING DIAGONAL STATIONARY REFLECTION PRINCIPLES 25

Proof. First, note that we may assume that θ ≥ λ. For otherwise, we can choose
θ′ ≥ λ > θ and set S′ = S ↑ [Hθ′ ]

ω. By Fact 4.2, S′ is projective stationary. If we
can show that the projective stationarity of S′ is preserved by some Tα, then by
applying Fact 4.2 to S = S′ ↓ [Hθ]

ω, it follows that S is projective stationary in
the extension.

So let us assume that θ ≥ λ. For every stationary set A ⊆ ω1, let

SA = S ∩ lift(A, [Hθ]
ω).

Using Claim 4.5, let αA < λ be such that TαA preserves the stationarity of SA. Let

α = sup{αA | A is a stationary subset of ω1}.

Recall that SRP implies that 2ω1 = ω2 (this is due to Todorčević; cf. [18, Theorem
9.82]). Since SRP holds in V and P is λ-strategically closed, this consequence still
holds in V [G]. So we have that in V [G], 2ω1 < λ, which implies that α < λ.

It now follows from Lemma 4.3 that Tα preserves the stationarity of SA for
every stationary A ⊆ ω1 in V [G]. This is because by that lemma, it suffices to
show that SA \ lift(S≥α, [Hθ]

ω) is stationary. But we know that TαA preserves the
stationarity of SA, which again by the lemma means that SA \ lift(S≥αA , [Hθ]

ω) is
stationary. Since αA ≤ α, we have that Sα ⊆ SαA , and so SA \ lift(S≥αA , [Hθ]

ω) ⊆
SA \ lift(S≥α, [Hθ]

ω) is stationary, as wished.

Since, in V , P ∗ Ṫα has a dense λ-directed closed subset, we know that, in V [G],
Tα is λ-distributive and hence does not add any new subsets of ω1. In particular,
every stationary subset of ω1 in the extension by Tα is already in V [G]. Therefore,
forcing with Tα preserves the projective stationarity of S. �

We can now finish the proof by showing that, in V [G], S contains a continuous ∈-
chain of length ω1. Let α < λ be such that Tα preserves the projective stationarity
of S, and let H be Tα-generic over V [G]. In V [G ∗H], S is projective stationary.
Working in V [G ∗ H], let θ′ ≥ θ be a regular cardinal. We can form S′ = S ↑
([Hθ′ ]

ω)V [G∗H]. S′ is then projective stationary in V [G ∗H] by Fact 4.2; note that
θ ≥ ω2 in V [G∗H]. Moreover, by the same fact, S′∩C is also projective stationary,
whenever C ⊆ [Hθ′ ]

ω is a club. In particular, the set

T = {x ∈ S′ | x ≺ 〈HV [G∗H]
θ′ ,∈, HV [G]

θ 〉}

is projective stationary in V [G ∗H].

Since P ∗ Ṫ is equivalent to a λ-directed closed forcing in V , it follows by our
assumptions that SRP holds in V [G∗H]. Hence, there is an ω1-chain 〈Ni | i < ω1〉 of

elementary submodels of H
V [G∗H]
θ in V [G ∗H] such that, for every i < ω1, Ni ∈ T .

Set Mi = Ni∩HV [G]
θ , for i < ω1. Then, since Tα is λ-distributive in V [G], it follows

that the sequence 〈Mi | i < ω1〉 is in V [G]. Moreover, it is a continuous ∈-chain

and, for every i < ω1, Mi is an elementary submodel of H
V [G]
θ (since H

V [G]
θ ∩Ni is

available as a predicate in Ni) and Mi ∈ S. This proves this instance of SRP. �

In order to use the argument of the previous proof to obtain the failure of
uDSR(1, Sω2

ω ) while SRP holds, we seem to need a stronger assumption. In fact,
we do not know whether its consistency follows from any large cardinal assump-
tion. Larson [14, Remark before Def. 6.5] points out that it follows from results of
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Woodin [18] that one can derive a model in which SRP(ω2) holds and the nonsta-
tionary ideal on ω1 has density ω1 from a model of ADR+ “θ is regular”. This is at
least going in the direction of our assumption.

Corollary 4.7. Suppose that SRP holds and continues to hold in any forcing ex-
tension obtained by an ω2-directed closed forcing notion. Assume furthermore that
the density of the nonstationary ideal on ω1 is ω1. Then there is an ω2-strategically
closed forcing notion which produces forcing extensions where

(1) SRP continues to hold, but
(2) uDSR(1, Sω2

ω ) fails.

Proof. By assumption, we may fix an ω1-sized collection A of stationary subsets
of ω1 which is dense in the stationary subsets of ω1, that is, for every stationary
B ⊆ ω1, there is an A ∈ A such that A ⊆ B.

We now argue as in the proof of Theorem 4.4, with λ = ω2. So we let G be
generic for P, adding a sequence 〈Sα | α < λ〉 of stationary subsets of Sω2

ω which

forms a counterexample to uDSR(1, Sω2
ω ). We define S≥α and Ṫα as before, for

α < ω2. As before, we see that in V [G], for every stationary S ⊆ [Hθ]
ω, where

θ ≥ ω2, there is an α < ω2 such that Tα preserves the stationarity of S. We
can now follow the proof of Claim 4.6 to show that in V [G], if S is projective
stationary in [Hθ]

ω, where θ ≥ ω2 is regular, then there is an α < ω2 such that
Tα preserves the projective stationarity of S. To see this, let, for any stationary
B ⊆ ω1, SB = S ∩ lift(B, [Hθ]

ω) and choose, an ordinal αB < ω2 such that TαA
preserves the stationarity of SA = S ∩ lift(A, [Hθ]

ω). Since the cardinality of A is
ω1, we know that α = sup{αA | A ∈ A} < ω2. It then follows that Tα preserves the
stationarity of SB , for every stationary B ⊆ ω1. Namely, given such a B, it suffices
to show that SB \ lift(S≥α, [Hθ]

ω) is stationary. But by density of A, there is an
A ∈ A with A ⊆ B, and we know that SA \ lift(S≥αA , [Hθ]

ω) is stationary. Clearly,
SA ⊆ SB , and S≥α ⊆ S≥αA , so that SA \ lift(S≥αA , [Hθ]

ω) ⊆ SB \ lift(S≥α, [Hθ]
ω)

is stationary.

Since P∗Ṫα has an ω2-directed closed dense subset, SRP holds in V P∗Ṫα , where
S is projective stationary, and this goes down to V [G] as before. �

5. Indexed square and sDSR

In this section, we will show that Theorem 2.1 is sharp by constructing models
in which both sDSR(<κ, S) and �(λ, κ) hold, where κ < λ are infinite regular
cardinals and S ⊆ λ is stationary. Notice that we have in fact already done this
in the proof of Theorem 3.28 (and in fact we obtained DSR(<κ, S) there). Our
reasons for including this section are twofold. First, we can significantly reduce
the large cardinals necessary. The hypotheses of Theorem 3.28 can be obtained by
assuming, for instance, that κ is indestructibly generically supercompact, whereas
we can achieve the hypotheses of Theorem 5.2 by starting in an inner model in
which λ is weakly compact (at least, if we want λ to be either inaccessible or the
successor of a regular cardinal in the final model). Second, Theorem 5.2 applies
more easily to a broader class of stationary sets S. The forcing notion employed
in the proof of Theorem 3.28 is only κ-directed closed and necessarily introduces
a nonreflecting stationary subset of Sλκ (see [13, Theorem 3.4]), so the natural
scenarios in which the hypotheses for Theorem 3.28 are satisfied require S ⊆ Sλ<κ,
whereas the hypotheses of our result in this section can be satisfied by S = λ, if, for
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instance, λ is weakly compact and remains such after any λ-directed closed forcing
of size λ.

We will need the following strengthening of �(λ, κ), introduced in [12].

Definition 5.1. Suppose that κ < λ are infinite regular cardinals. A �ind(λ, κ)

sequence is a matrix ~C = 〈Cα,i | α ∈ lim(λ), i(α) ≤ i < κ〉 satisfying the following
conditions.

(1) For all α ∈ lim(λ), we have i(α) < κ.
(2) For all α ∈ lim(λ) and i(α) ≤ i < κ, Cα,i is a club in α.
(3) For all α ∈ lim(λ) and i(α) ≤ i < j < κ, we have Cα,i ⊆ Cα,j .
(4) For all limit α, β ∈ lim(λ) and i(β) ≤ i < κ, if α ∈ lim(Cβ,i), then i(α) ≤ i

and Cα,i = Cβ,i ∩ α.
(5) For all α, β ∈ lim(λ) with α < β, there is i with i(β) ≤ i < κ such that

α ∈ lim(Cβ,i).
(6) There is no club D ⊆ λ such that, for every α ∈ lim(D), there is i with

i(α) ≤ i < κ such that D ∩ α = Cα,i. (Such a club would be a thread

through ~C.)
�ind(λ, κ) is the assertion that there is a �ind(λ, κ)-sequence.

It is clear from the definition that �ind(λ, κ) implies the existence of a full
�(λ, κ)-sequence (see Definition 1.4. Namely, by condition (5) if we let Cα =

{Cα,i | i(α) ≤ i < κ}, for limit α < λ, then ~C is a �(λ, κ)-sequence with the prop-
erty that for all α, β ∈ lim(λ) with α < β, α is a limit point of some C ∈ Cβ . This
is a much stronger property than fullness.

Theorem 5.2. Suppose that κ < λ are infinite regular cardinals, λ<λ = λ, S ⊆ λ
is stationary, and DSR∗(<κ, S) holds. Then there is a cofinality-preserving forcing
extension in which S remains stationary and both sDSR(<κ, S) and �ind(λ, κ) hold.

Remark 5.3. Note that, since �ind(λ, κ) implies the existence of a full �(λ, κ) se-
quence, we can conclude from Theorem 1.5 that Refl(κ, T ) fails for every stationary
T ⊆ λ in the model obtained in Theorem 5.2. Therefore, this gives an alternate
proof of Theorem 3.19 in the cases in which κ ≥ ω.

Proof of Theorem 5.2. By the results of [8, Section 3.2], there is a two-step forcing

iteration S ∗ Ṗ with the following salient properties.

• S has cardinality λ and, in V S, P is a forcing iteration of length λ+, taken
with supports of size less than λ, in which each iterand has cardinality λ.
P therefore has the λ+-cc in V S. For η ≤ λ+, let Pη denote the initial
segment of length η of this iteration.

• In V S∗Ṗ, �ind(λ, κ) holds, as witnessed by a sequence ~C = 〈Cα,i | α <
λ, i(α) ≤ i < κ〉 explicitly introduced by S.

• In V S, for each i < κ, define a forcing poset Ti as follows. Conditions
of Ti are all clubs Cα,i (from the �ind(λ, κ)-sequence isolated above) such
that i(α) ≤ i. If Cα,i and Cβ,i are in Ti, then Cβ,i ≤Ti Cα,i if and only if
Cα,i = Cβ,i ∩ α. (Ti is the forcing to add a thread through the ith column

of ~C.) Then the following hold.

– In V , for all i < κ and all η ≤ λ+, S ∗ Ṗη ∗ Ṫi has a dense λ-directed
closed subset. Moreover, if η < λ+, then this subset has cardinality λ.
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– In V S∗Ṗ, for all i < j < κ, the map Cα,i 7→ Cα,j is a projection from
Ti to Tj . This projection will be denoted by πij : Ti → Tj .

– In V S∗Ṗ, if T is a stationary subset of λ, then there are i < κ and
t ∈ Ti such that t Ti “Ť is stationary”.

Let G ∗H be S ∗ Ṗ-generic over V . For η ≤ λ+, let Hη be the Ṗη-generic filter

induced by H. V [G∗H] is our desired model. Notice that since, in V , S∗ Ṗ∗ Ṫ0 has
a dense λ-directed closed subset, it preserves all stationary subsets of λ, and hence
S remains stationary in V [G ∗H]. It remains to verify that sDSR(<κ, S) holds in
V [G ∗H].

To this end, work in V [G∗H] and suppose that 〈Sα,j | α < λ, j < jα〉 is a matrix
of stationary subsets of S, where jα < κ for every α < λ. We will find γ ∈ Sλ>ω
such that, for stationarily many α < γ, for all j < jα, we have that Sα,j ∩ γ is
stationary in γ.

By the final property of S∗ Ṗ listed above, for each α < λ and j < jα, we can find
an iα,j < κ and a condition tα,j ∈ Tiα,j such that tα,j Tiα,j “Šα,j is stationary”.

Notice that, for each such α and j and all k with iα,j < k < κ, we also have

πiα,jk(tα,j) Tk “Šα,j is stationary” by the arguments of Claim 3.24.
For each α < λ and j < jα, let βα,j be such that tα,j = Cβα,j ,iα,j . For each

α < λ, find a limit ordinal βα with α < βα < λ such that βα,j < βα for all j < jα.
Since jα < κ, the definition of �ind(λ, κ) implies that we can find an ordinal iα with
i(βα) ≤ iα < κ such that, for all j < jα, we have βα,j ∈ lim(Cβα,iα) and iα > iα,j .
Letting tα = Cβα,iα , it follows that, for every j < jα, we have tα ≤Tiα πiα,jiα(tα,j),

and hence tα Tiα “Šα,j is stationary”. For i with iα ≤ i < κ, let tiα = πiαi(tα).
By the chain condition of P, we can find η < λ+ such that

〈Sα,j | α < λ, j < jα〉 ∈ V [G ∗Hη].

Work now in V [G ∗Hη]. Since stationarity is downward absolute, it is still the case
in V [G ∗ Hη] that, for all α < λ, all j < jα, and all i with iα ≤ i < κ, we have

tiα Ti “Šα,j is stationary”.

For each i < κ, let J̇i be the Ti-name for the generic filter, and let Ṙi be the
Ti-name for the set

{α ∈ S | iα ≤ i and tiα ∈ J̇i}.

Claim 5.4. There is i < κ and r ∈ Ti such that

r Ti “Ṙi is stationary”.

Proof. Suppose not. Then, for each i < κ, there is a Ti-name Ėi for a club in λ
disjoint from Ṙi. Since, for each i < κ, π0i is a projection from T0 to Ti, each Ėi
can be interpreted as a T0-name, so we can let Ė be a T0-name for

⋂
i<κ Ėi.

Let J be T0-generic over V [G ∗Hη], let D =
⋃
J be the generic club added by

J that threads ~C, and let E be the interpretation of Ė in V [G ∗ Hη ∗ J ]. Notice

that, since S is a stationary subset of λ in V and S ∗ Ṗη ∗ Ṫ0 has a dense λ-directed
closed subset, S remains stationary in V [G ∗Hη ∗ J ].

For each γ ∈ E, find an ordinal ξγ with γ ≤ ξγ < λ such that Cξγ ,0 ∈ J and, in

V [G ∗Hη], Cξγ ,0 T0
“γ̌ ∈ Ė”. Note that, by our definition of Ė, it follows that,

for all i < κ, we have Cξγ ,i Ti “γ̌ ∈ Ėi”. Let

E∗ = {δ ∈ lim(E) | for all γ ∈ E ∩ δ, we have ξγ < δ}.
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Then E∗ is a club in λ and E∗ ⊆ lim(D). We can therefore find δ ∈ E∗ ∩ S. Then
Cδ,0 ∈ J and Cδ,0 ≤T0 Cξγ ,0 for every γ ∈ E ∩ δ. Since sup(E ∩ δ) = δ and, in

V [G ∗Hη], Ė is forced to be a club, we know that Cδ,0 T0
“δ̌ ∈ Ė.” in V [G ∗Hη].

By the definition of Ė, it follows that, for all i < κ, we have Cδ,i Ti “δ̌ ∈ Ėi”.
Recall that we previously found a limit ordinal βδ with δ < βδ < λ and an

ordinal iδ < κ such that, for all i with iδ ≤ i < κ, we have tiδ = Cβδ,i. Let i∗ < κ
be least such that i∗ ≥ iδ and δ ∈ lim(Cβδ , i

∗). Then tiδ ≤Ti Cδ,i and, clearly,

tiδ Ti “δ̌ ∈ Ṙi”. However, this contradicts the fact that Cδ,i Ti “δ̌ ∈ Ėi” and Ėi
is forced to be disjoint from Ṙi. �

Choose i < κ and r ∈ Ti as in the statement of the claim, and let J be Ti-generic
over V [G∗Hη] with r ∈ J . Let R be the interpretation of Ṙi in V [G∗Hη ∗J ]. Note
that, for all α ∈ Ri and all j < jα, we know that Sα,j remains stationary in V [G ∗
Hη ∗J ]. Since, in V , S∗ Ṗη ∗ Ṫi has a dense λ-directed closed subset of cardinality λ
and DSR∗(<κ, S) holds, it follows that DSR(<κ, S) holds in V [G∗Hη ∗J ]. Working

in V [G ∗ Hη ∗ J ], define a matrix 〈Ŝα,j | α < λ, j < jα + 1〉 as follows. For all

α ∈ Ri, let Ŝα,j = Sα,j for all j < jα and Ŝα,jα = R. For α ∈ λ \ Ri, simply let

Ŝα,j = R for all α < jα + 1.
By DSR(<κ, S), we can find an ordinal γ ∈ Sλ>ω and a club F ⊆ γ such that

Ŝα,j ∩ γ is stationary in γ for every α ∈ F and every j < jα + 1. Since Ŝα,jα = R
for every α < λ, it follows that F ∩R is stationary in γ and, for all α ∈ F ∩R and
all j < jα, we have that Sα,j ∩ γ is stationary in γ. Since stationarity is downward
absolute, it follows that, in V [G ∗ Hη], the set of α < γ such that Sα,j ∩ γ is
stationary in γ for every j < jα is itself stationary in γ. Since V [G ∗ H] has the
same bounded subsets of λ as V [G∗Hη], this continues to hold in V [G∗H] as well.
Therefore, γ witnesses this instance of sDSR(<κ, S) in V [G ∗H]. �

6. Questions

We end with a few questions that remain open. First, recall Lemma 2.5, stating
that if λ is a regular uncountable cardinal, S ⊆ λ is stationary and DSR(1, S) holds,
then Refl(ω, S) follows. On the other hand, by Theorem 3.28, it is consistent to
have regular cardinals ω1 < κ < λ such that DSR(<κ, Sλω) holds yet Refl(κ, S) fails,
for any set S stationary in λ. So the question that remains in this context is:

Question 6.1. Is it consistent that there is a regular cardinal λ > ω1 such that
DSR(1, Sλω) holds but Refl(ω1, λ) fails? Or that DSR(ω, Sλω) holds but Refl(ω1, λ)
fails?

In another direction, recall Theorem 2.1, which states that if 1 < κ < λ, λ
is regular, and sDSR(<κ, S) holds for some stationary S ⊆ λ, then �(λ,<κ) fails.
This is an improvement of the original observation, which drew the same conclusion
from the assumption of DSR(<κ, S). We have shown that this is optimal in some
sense (see Theorems 3.28 and 5.2), but it is open whether it is optimal in another
sense. Namely, the following is unknown.

Question 6.2. Suppose that 1 < κ < λ, λ is regular, and uDSR(<κ, S) holds for
some stationary S ⊆ λ. Does it follow that �(λ,<κ) fails?

Next, we ask whether Theorem 3.21 can be improved to cover the case in which
λ = κ+.
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Question 6.3. Is it consistent that κ is an uncountable cardinal, λ = κ+, and
sDSR(<κ, Sλω) holds but DSR(1, Sλω) fails?

Finally, we ask two questions around the consistency of DSR(<κ, S) with �(λ, κ)
addressing the optimality of Theorems 3.28 and 5.2.

Question 6.4. What is the consistency strength of the existence of infinite regular
cardinals κ < λ, with λ ≥ ω2, for which there exists a stationary S ⊆ λ such that
DSR(<κ, S) +�(λ, κ) holds?

Question 6.5. Are there consistently infinite regular cardinals κ < λ for which
DSR(<κ, λ) + �(λ, κ) holds? (Here λ could be either inaccessible or the successor
of a singular cardinal.)
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