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Abstract. Bergfalk, Hrušak, and Shelah recently introduced a weakening of

the classical partition relation for pairs in which the complete monochromatic
subgraph of the classical relation is replaced by a highly connected monochro-

matic subgraph. In subsequent work, we proved that, assuming the consistency

of the existence of a weakly compact cardinal, it is consistent that an optimal
square-bracket version of this highly connected partition relation holds at the

continuum. In this paper, we introduce a higher-dimensional generalization

of the highly connected partition relation and prove an analogous consistency
result indicating that, if the existence of a weakly compact cardinal is consis-

tent, then it is consistent that an optimal square-bracket version of the higher-

dimensional highly connected partition relation holds at the continuum.

1. Introduction

The infinite Ramsey theorem for pairs can be stated in terms of graph colorings
as follows: for any edge-coloring of a countably infinite complete graph using finitely
many colors, there is an infinite complete subgraph all of whose edges receive the
same color. As was realized early on in the study of Ramsey theory, though, if one
tries to generalize this statement to uncountable cardinals in the most natural way,
one obtains a statement that is only consistent at large cardinals.

In [1], Bergfalk, Hrušák, and Shelah introduce a natural weakening of the parti-
tion relation from the classical Ramsey theorem that, unlike the classical version,
can consistently hold at accessible cardinals. In this weakening, one requires in
the conclusion of the statement only the existence of a monochromatic subgraph
that exhibits a high degree of connectedness rather than the complete monochro-
matic subgraph of the classical relation. To state this more precisely, we recall the
following definition. (See the end of this section for an explanation of notation.)

Definition 1.1. Given a graph G = (X,E) and a cardinal κ, we say that G is
κ-connected if G \ Y is connected for every Y ∈ [X]<κ. We say that G is highly
connected if it is |X|-connected.
Definition 1.2. (Bergfalk-Hrušák-Shelah [1]) Suppose that µ, ν, and λ are car-
dinals. The partition relation ν →hc (µ)2λ is the assertion that, for every coloring
c : [ν]2 → λ, there is an X ∈ [ν]µ and a highly connected subgraph (X,E) of
(ν, [ν]2) such that c ↾ E is constant.

The negation of ν →hc (µ)2λ is indicated by ν ̸→hc (µ)2λ (and we will use anal-
ogous notation to negate other partition relations without further comment). We
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remark that a complete graph is evidently highly connected, and, if G is a finite
highly connected graph, then G is complete. On the other hand, it is straightfor-
ward to construct a highly connected non-complete graph of any prescribed infinite
cardinality. The relation ν →hc (µ)

2
λ is therefore a weakening of the classical rela-

tion ν → (µ)2λ that coincides with the classical relation for finite µ.
If κ is an uncountable cardinal, then the classical partition relation κ → (κ)22

holds if and only if κ is weakly compact. On the other hand, the highly-connected
version of this partition relation is consistent at, for instance, 2ℵ1 .

Theorem 1.3 (Bergfalk-Hrušák-Shelah [1]). It is consistent, relative to the con-
sistency of a weakly compact cardinal, that

2ℵ1 →hc

(
2ℵ1

)2
λ

holds for all λ < 2ℵ1 .

It is proven in [1] that ℵ1 cannot be replaced by ℵ0 in the previous theorem. In

particular, 2ℵ0 ̸→hc

(
2ℵ0

)2
ℵ0

is a theorem of ZFC. However, as the author shows

in [3], if one further weakens the highly connected partition relation to require the
existence of a large highly connected subgraph on which only two colors appear,
then one does obtain a nontrivial statement consistent at 2ℵ0 . More precisely:

Definition 1.4. Suppose that µ, ν, λ, and κ are cardinals. The partition relation
ν →hc [µ]

2
λ,κ (resp. ν →hc [µ]

2
λ,<κ) is the assertion that, for every coloring c : [ν]2 →

λ, there is an X ∈ [ν]µ, a highly connected subgraph (X,E) of (ν, [ν]2), and a set
Λ ∈ [λ]≤κ (resp. Λ ∈ [λ]<κ) such that c“E ⊆ Λ.

Theorem 1.5 ([3]). The following two statements are equiconsistent over ZFC.

(1) There exists a weakly compact cardinal.
(2) 2ℵ0 →hc [2

ℵ0 ]2λ,2 holds for all λ < 2ℵ0 .

Note that all of the definitions and theorems presented thus far about highly
connected Ramsey theory are two-dimensional. In this paper, we present a general-
ization of highly connected Ramsey theory to higher dimensions, prove the analogue
of Theorem 1.5 in the context of higher dimensions, and prove that our general-
ization is sharp in the same sense that Theorem 1.5 is sharp: namely, that the
maximum number of colors allowed to appear in the highly connected subgraph
cannot be reduced.

Before we embark on this task, though, let us make a preliminary remark about
the nature of our generalization to higher dimensions. In two dimensions, i.e., in
the context of graphs, the notion of “connectedness” is unambiguous: a graph is
connected if and only if every pair of distinct vertices in the graph is connected by a
path. However, there are a number of natural and nonequivalent ways to generalize
the notion of “connectedness” to the realm of k-uniform hypergraphs when k > 2.
One approach, and the one we take here, is to generalize the notion of a “path”
from the setting of graphs to the setting of k-uniform hypergraphs and assert that a
hypergraph is connected if and only if every pair of vertices is connected by such a
generalized path. Even here, there are multiple nonequivalent ways of defining the
higher-dimensional analogue of “path”. We choose the notion of “tight path” (see
Section 2 for the definition), but, as the reader can verify, our proofs go through
with any of the other common higher-dimensional analogues of “path” extant in
the literature.
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However, there are other meaningful approaches to connectivity of k-uniform
hypergraphs, including some that come from homological algebra (cf. [5], for ex-
ample). In the context of graphs, homological connectivity and path connectivity
are equivalent, but they become distinct notions in higher dimensions. We feel
that generalizations of highly connected Ramsey theory using homological connec-
tivity in place of path connectivity may be quite interesting and fruitful, but this
lies outside of the scope of this paper. We refrain from making any assertion that
the precise generalization considered in this paper represents the “correct” gener-
alization of highly connected Ramsey theory to higher dimensions; we encourage
further investigation in other directions, and we plan to carry out some of these
investigations in future work.

The structure of the paper is as follows. In Section 2, we introduce our higher-
dimensional version of the highly connected partition relation and present some of
its basic properties, including a negative ZFC result (Proposition 2.5) that will show
that the main result of the paper is sharp. In Section 3, we review some definitions
and results about higher-dimensional ∆-systems that will be important for the proof
of our main theorem. Finally, in Section 4, we prove the main result of this paper
(Theorem 4.1), indicating that, consistently, nontrivial higher-dimensional highly
connected partition relations can hold at 2ℵ0 .

1.1. Notation and conventions. Our notation is for the most part standard. For
all set-theoretic notions that are used here without definition, we refer the reader to
[2]. If A is a set or proper class and κ is a cardinal, then [A]κ = {B ⊆ A | |B| = κ}.
The sets [A]≤κ and [A]<κ are then defined in the obvious way. For an integer k ≥ 2,
a k-uniform hypergraph is a pair H = (X,E), where X is a set and E ⊆ [X]k. The
elements ofX are called the vertices ofH, and the elements of E are called the edges
of H. A 2-uniform hypergraph is simply called a graph. A k-uniform hypergraph
H = (X,E) is complete if E = [X]k.

If a is a set of ordinals, then we will often conflate a with the sequence enumer-
ating a in increasing fashion. In particular, if η < otp(a), then a(η) denotes the
unique β ∈ a such that otp(a ∩ β) = η. Similarly, if r ⊆ otp(a), then a[r] denotes
the set {a(η) | η ∈ r}. We denote the class of ordinals by On. If β is an ordinal and
X is a set, then βX denotes the set of functions from β to X, and <βX denotes⋃

α<β
αX.

2. Highly tight-path-connected hypergraphs

In this section, we introduce our higher-dimensional versions of the partition
relations considered above. To do so, we will need to generalize the notion of highly
connected from the realm of graphs to the realm of k-uniform hypergraphs for an
arbitrary 2 ≤ k < ω. As mentioned in the introduction, we choose to focus in this
paper on notions of connectivity arising from generalized paths.

Definition 2.1. Suppose that 2 ≤ t ≤ k < ω, 0 < ℓ < ω, and H = (X,E) is a
k-uniform hypergraph. A t-tight Berge path of length ℓ in H is a pair P = (x⃗, e⃗)
consisting of an injective sequence x⃗ = ⟨xi | i < ℓ+ t− 1⟩ of elements of X and an
injective sequence e⃗ = ⟨ei | i < ℓ⟩ of elements of E such that, for all i < ℓ, we have
{xi+s | s < t} ⊆ ei. In such a situation, we say that P is a t-tight Berge path from
x0 to xℓ+t−2 or that x0 and xℓ+t−2 are connected by P .
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If t = k, then a t-tight Berge path in H is simply called a tight path, and if t = 2,
then a t-tight Berge path is simply called a Berge path.

Note that, for graphs, tight paths and Berge paths are the same and coincide
with what are typically simply called “paths”. In this paper, for concreteness and
ease of notation, we will be working only with tight paths. However, the reader
may verify that all of our proofs, with only superficial modifications, can be made
to prove the analogous results formulated in terms of t-tight Berge paths for any t
with 2 ≤ t ≤ k, where k is the uniformity of the hypergraph under consideration.

Also note that, if P = (x⃗, e⃗) is a tight path in a k-uniform hypergraph, then
e⃗ is uniquely determined by x⃗: if x⃗ = ⟨xi | i < ℓ + k − 1⟩ and e⃗ = ⟨ei | i < ℓ⟩,
then ei = {xi+s | s < k} for all i < ℓ. Therefore, in practice we identify a tight
path with its sequence of vertices and will slightly abuse notation by writing, for
instance, P = x⃗.

With the higher-dimensional analogue of path fixed, our higher dimensional gen-
eralization of highly connected now follows naturally.

Definition 2.2. Suppose that 2 ≤ k < ω and H = (X,E) is a k-uniform hyper-
graph.

(1) H is tight-path-connected if, for all distinct x, y ∈ H, there is a tight path
in H from x to y.

(2) For a cardinal κ, we say that H is κ-tight-path-connected if, for all Y ∈
[X]<κ, the k-uniform hypergraph

H \ Y := (X \ Y, E ∩ [X \ Y ]k)

is tight-path-connected.
(3) H is highly tight-path-connected if it is (|X| − k + 1)-tight-path-connected.

We note that, if H is an infinite k-uniform hypergraph, then Definition 2.2(3)
is equivalent to the more natural statement asserting that H is |X|-tight-path-
connected, which is also more directly analogous to Definition 1.1. The reason for
the slightly less natural formulation is the fact that, if k > 2, then a finite k-uniform
hypergraph H = (X,E) with at least two vertices cannot be (|X| − k + 2)-tight-
path-connected, since if one removes (|X| − k+1)-many vertices from X, then one
is left with (k− 1)-many vertices and zero edges. (Definition 2.2 can easily be seen
to be equivalent to Definition 1.1 in the case of k = 2.) We also note that, as was
true in the 2-dimensional case, for every k ≥ 2, a finite k-uniform hypergraph is
highly tight-path-connected if and only if it is complete, but it is straightforward
to construct highly tight-path-connected k-uniform hypergraphs of any prescribed
infinite cardinality that are not complete.

With these definitions in place, we can generalize the highly connected partition
relations of [1] and introduce natural square-bracket variants. In what follows, we
use the subscript htc to stand for “highly tight-path-connected”.

Definition 2.3. Suppose that µ, ν, λ, and κ are cardinals and 2 ≤ k < ω.

(1) The partition relation ν →htc (µ)
k
λ is the assertion that, for every coloring

c : [ν]k → λ, there is an X ∈ [ν]µ and a highly tight-path-connected k-
uniform hypergraph (X,E) such that c ↾ E is constant.
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(2) The partition relation ν →htc [µ]
k
λ,κ (resp. ν →htc [µ]

k
λ,<κ) is the assertion

that, for every coloring c : [ν]k → λ, there is an X ∈ [ν]µ, a highly tight-
path-connected k-uniform hypergraph (X,E), and a set Λ ∈ [λ]≤κ (resp.
Λ ∈ [λ]<κ) such that c“E ⊆ Λ.

We remind the reader that the classical partition relation ν → (µ)kλ is the
strengthening of Definition 2.3 in which (X,E) is required to be complete (and simi-
larly for ν → [µ]kλ,κ), and that the infinite Ramsey theorem asserts that ℵ0 → (ℵ0)

k
m

for all finite k and m. In light of the following proposition (which was observed
in [1] in the case k = 2) and the fact that finite k-uniform hypergraphs are highly
tight-path-connected if and only if they are complete, the relation ν →htc (µ)

k
λ can

be seen as a natural generalization of the finite instances of the classical Ramsey
partition relation to uncountable cardinalities. The proposition also stands in stark
contrast to the fact that, if µ is an uncountable cardinal that is not weakly compact,
then µ ̸→ (µ)22.

Proposition 2.4. Suppose that µ is an infinite cardinal and 1 < k,m < ω. Then
µ →htc (µ)

k
m.

Proof. Fix a coloring c : [µ]k → m and a uniform ultrafilter U over µ. Recall
that, for 1 ≤ n < ω, we can define ultrafilters Un over [µ]n by induction on n as
follows. First, if X ⊆ [µ]1, then X ∈ U1 if and only if

⋃
X ∈ U . Now suppose that

1 ≤ n < ω and we have defined Un. For every set X ⊆ [µ]n+1 and every ordinal
α < µ, let

Xα := {b ∈ [µ \ (α+ 1)]n | {α} ∪ b ∈ X},
and put X in Un+1 if and only if

{α ∈ X | Xα ∈ Un} ∈ U.

It is easy to check that, for all 1 ≤ n < ω, Un is an ultrafilter over [µ]n and, if
X ∈ U , then [X]n ∈ Un.

Now, for each α < µ, since m is finite, we can fix a color iα < m and a set
Z(α) ∈ Uk−1 such that, for all b ∈ Z(α), we have min(b) > α and c({α} ∪ b) = iα.
We can then fix a set X ∈ U and a color i < m such that iα = i for all α ∈ X.

We claim that (X, [X]k ∩ c−1{i}) is a highly tight-path-connected hypergraph.
To this end, fix Y ∈ [X]<µ and distinct α, β ∈ X \ Y . We will find b ∈ [X \ Y ]k−1

such that min(b) > max{α, β} and c({α} ∪ b) = c({β} ∪ b) = i. This will finish the
proof since then the sequence ⟨α⟩⌢b⌢⟨β⟩ will be a tight path of length 2 from α
to β in (X \ Y, [X \ Y ]k ∩ c−1{i}).

Notice that, since U is a uniform ultrafilter, we have X \ Y ∈ U , and hence
[X \ Y ]k−1 ∈ Uk−1. We can therefore fix

b ∈ [X \ Y ]k−1 ∩ Z(α) ∩ Z(β).

Then b is as desired. □

In light of this proposition, we will focus on colorings using infinitely many
colors. We now prove a proposition that places a limit on the positive instances of
the partition relation that can consistently hold.

Proposition 2.5. Suppose that λ and µ are infinite cardinals such that 2<λ = λ
and µ ≤ 2λ, and let k ≥ 2 be a natural number. Then

µ ̸→htc [µ]
k
λ,<k.
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Proof. For F ∈ [λ2]k, let ∆(F ) denote the least j < λ such that

|{f ↾ (j + 1) | f ∈ F}| = k.

In other words, it is the least j such that all distinct f, g ∈ F differ at or before
place j.

We will define a coloring c : [µ]k → (<λ2)k witnessing µ ̸→htc [µ]
k
λ,<k. Note that,

by our assumption, we have |(<λ2)k| = λ, so c takes the correct number of colors.
For simplicity, when discussing sets {α0, α1, . . . , αk−1} ∈ [µ]k, we will implicitly
assume that α0 < α1 < . . . < αk−1.

Let {fα | α < µ} be such that fα and fβ are distinct elements of λ2 for all
α < β < µ. Given A = {αi | i < k} ∈ [µ]k, let ∆(A) = ∆({fαi

| i < k}), and let

c(A) = ⟨fαi ↾ (∆(A) + 1) | i < k⟩ .
To see that c witnesses µ ̸→htc [µ]kλ,<k, fix a set X ∈ [µ]µ and a highly tight-

path-connected k-uniform hypergraph (X,E), and let Λ = c“E. We will show that
|Λ| ≥ k.

Claim 2.6. For every α ∈ X, there is e ∈ E such that α = min(e).

Proof. Fix α ∈ X. Since (X,E) is highly connected, it follows that the hypergraph
(X \α, E ∩ [X \α]k) is connected. Therefore, there is an element e of E ∩ [X \α]k
containing α; since e ⊆ (X \α), it follows that α must be the least element of e. □

Elements of Λ are of the form σ⃗ = ⟨σi | i < k⟩ where there is a fixed δ(σ⃗) < λ
such that σi ∈ δ(σ⃗)+12 for all i < k. Fix τ⃗ = ⟨τi | i < k⟩ in Λ such that δ(τ⃗) is
minimal, and fix an element b = {β0, . . . , βk−1} of E such that c(b) = τ⃗ . By Claim
2.6, for each i < k, we can fix ei ∈ E such that βi = min(ei).

Claim 2.7. For all i < i′ < k, we have c(ei) ̸= c(ei′).

Proof. Fix i < i′ < k. Since c(b) = τ⃗ , we have

fβi ↾ (δ(τ⃗) + 1) = τi ̸= τi′ = fβi′ ↾ (δ(τ⃗) + 1).

Let c(ei) = σ⃗i = ⟨σi
0, σ

i
1, . . . , σ

i
k−1⟩ and c(ei′) = σ⃗i′ = ⟨σi′

0 , σ
i′

1 , . . . σ
i′

k−1⟩. Then

fβi
↾ (δ(σ⃗i) + 1) = σi

0, and, by choice of τ⃗ , we have δ(τ⃗) ≤ δ(σ⃗i). Similarly,

fβi′ ↾ (δ(σ⃗
i′) + 1) = σi′

0 and δ(τ⃗) ≤ δ(σ⃗i′). In particular, τi is an initial segment of

σi
0 and τi′ is an initial segment of σi′

0 . Since τi ̸= τi′ , it follows that c(ei) ̸= c(ei′). □

By Claim 2.7, {c(ei) | i < k} is a subset of Λ of size k, and thus |Λ| ≥ k, as
desired. □

Corollary 2.8. For all 2 ≤ k < ω, 2ℵ0 ̸→htc [2
ℵ0 ]kℵ0,<k. □

In Section 4, we will show that this corollary is sharp by proving the consistency
of 2ℵ0 →htc [2

ℵ0 ]kℵ0,k
, modulo the consistency of the existence of a weakly compact

cardinal.

3. Higher-dimensional ∆-systems

We now introduce one of the primary technical tools that we will use in the proof
of our main theorem: higher-dimensional ∆-systems. The use of higher-dimensional
analogues of ∆-systems dates back to work of Todorcevic [8] and Shelah [6], [7] in
the 1980s; the precise definitions and results in this section come primarily from
[4]. We first need the following crucial definitions.
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Definition 3.1. (Aligned sets) Suppose that a and b are sets of ordinals.

(1) We say that a and b are aligned if otp(a) = otp(b) and, for all γ ∈ a∩ b, we
have otp(a ∩ γ) = otp(b ∩ γ). In other words, if γ is a common element of
a and b, then it occupies the same relative position in both a and b.

(2) If a and b are aligned then we let r(a, b) := {i < otp(a) | a(i) = b(i)}.
Notice that, in this case, a ∩ b = a[r(a, b)] = b[r(a, b)].

Definition 3.2. (Uniform k-dimensional ∆-systems) Suppose that X is a set of
ordinals, 1 ≤ k < ω, and, for all b ∈ [X]k, ub is a set of ordinals. We call
⟨ub | b ∈ [X]k⟩ a uniform k-dimensional ∆-system if there is an ordinal ρ and,
for each m ⊆ k, a set rm ⊆ ρ satisfying the following statements.

(1) otp(ub) = ρ for all b ∈ [X]k.
(2) For all a, b ∈ [X]k and m ⊆ k, if a and b are aligned with r(a, b) = m, then

ua and ub are aligned with r(ua, ub) = rm.
(3) For all m0,m1 ⊆ k, we have rm0∩m1 = rm0 ∩ rm1 .

The result about existence of higher-dimensional ∆-systems that will be relevant
for us is the following.

Theorem 3.3 ([4]). Suppose that 1 ≤ k < ω and that κ < µ are infinite cardinals,
with µ being weakly compact. Suppose also that g : [µ]k → κ is a function and
⟨ua | a ∈ [µ]k⟩ is a sequence consisting of elements of [On]<κ. Then there is
X ∈ [µ]µ such that g ↾ [X]k is constant and ⟨ub | b ∈ [X]k⟩ is a uniform k-
dimensional ∆-system.

These higher-dimensional ∆-systems are especially useful in forcing arguments
involving higher-dimensional combinatorial statements. We end this section with
some lemmas indicating their utility, followed by a general discussion of a process
that will be put into use in the proof of our main theorem in Section 4.

For the rest of this paper, µ will denote a fixed weakly compact cardinal. The
particular forcing notion we will be working with is P := Add(ω, µ), the forcing
to add µ-many Cohen reals. We think of conditions in P as being finite partial
functions from µ to 2, ordered by reverse inclusion. For each p ∈ P, let up :=
dom(p), and let p̄ denote the “collapse” of p. More formally, p̄ : otp(up) → 2 is
defined by letting p̄(j) = p(up(j)) for every j < otp(up). Note that {p̄ | p ∈ P} =
<ω2.

Proposition 3.4. Suppose that p, q ∈ P are such that

• up and uq are aligned; and
• p̄ = q̄.

Then p and q are compatible.

Proof. It suffices to show that, for all α ∈ up ∩ uq, we have p(α) = q(α). To this
end, fix such an α. Since up and uq are aligned, there is a single η < otp(up) such
that α = up(η) = uq(η). But then p(α) = p̄(η) = q̄(η) = q(α), as desired. □

Lemma 3.5. Fix 1 ≤ k < ω, and suppose that ⟨pa | a ∈ [µ]k⟩ is a sequence of
conditions in P. Then there is X ∈ [µ]µ such that, for all a, b ∈ [X]k, if a and b
are aligned, then pa and pb are compatible.

Proof. Define a function g : [µ]k → <ω2 by letting g(a) = p̄a for all a ∈ [µ]k. Also,
for notational ease, let ua denote upa

for all a ∈ [µ]k. Now apply Lemma 3.3 to g
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and the sequence ⟨ua | a ∈ [µ]k⟩ to obtain an X ∈ [µ]µ such that g ↾ [X]k is constant
and ⟨ua | a ∈ [X]k⟩ is a uniform n-dimensional ∆-system. Now, if a, b ∈ [X]k are
aligned, then ua and ub are aligned and p̄a = p̄b, so, by Proposition 3.4, pa and pb
are compatible. Thus, X satisfies the conclusion of the lemma. □

Discussion 3.6. Suppose that 1 ≤ k < ω, X is a set of ordinals whose order type
is a limit of limit ordinals, and ⟨ub | b ∈ [X]k⟩ is a uniform k-dimensional ∆-system,
as witnessed by an ordinal ρ and subsets ⟨rm | m ⊆ k⟩. Assume also that ρ is finite,
i.e., each ub is a finite set of ordinals. Let

X∗ := {α ∈ X | otp(X ∩ α) is a limit ordinal}.

Now, for any a ∈ [X∗]<k and any m ∈ [n]|a|, define a set um
a as follows. First,

fix a set b ∈ [X]k such that b[m] = a. Such a b exists because a ⊆ X∗ and hence
there are infinitely many elements of X between any two elements of a. Then let
um
a = ub[rm].
We claim that this definition of um

a is independent of our choice of b. To see this,
suppose that b0, b1 ∈ [X]k are such that b0[m] = a = b1[m]. We must show that
ub0 [rm] = ub1 [rm]. Fix c ∈ [X]k such that

• c[m] = a;
• c \ a is disjoint from both b0 and b1.

Again, it is possible to find such a c because of the fact that there are infinitely
many elements of X between any two elements of a. Note that, for each i < 2,
bi and c are aligned and r(bi, c) = m. It follows that ubi and uc are aligned and
r(ubi , uc) = rm. In particular, we have

ub0 [rm] = uc[rm] = ub1 [rm],

as desired.
We now argue that, for any m < k and any a ∈ [X∗]m, the sequence

⟨um+1
a∪{α} | α ∈ X∗ \ (max(a) + 1)⟩

is a (1-dimensional) ∆-system with root um
a . (Here, in expressions like um

a , the m
in the superscript should be interpreted as the subset of k consisting of all natural
numbers less than m.) To see this, fix α < β, both in X∗ \ (max(a) + 1). Let
bα, bβ ∈ [X∗ \ (β + 1)]k−m−1 be disjoint sets, and let cα := a ∪ {α} ∪ bα and
cβ := a ∪ {β} ∪ bβ . Then cα and cβ are aligned and r(cα, cβ) = m, and hence

ucα ∩ ucβ = ucα [rm] = ucβ [rm] = um
a . Moreover, we have um+1

a∪{α} = ucα [rm+1] and

um+1
a∪{β} = ucβ [rm+1]. Putting this all together, we obtain um+1

a∪{α} ∩ um+1
a∪{β} = um

a , as

desired.
It also follows that, if m < k, a, a′ ∈ [X∗]m are aligned, and m ∈ [k]m, then um

a

and um
a′ are aligned. To see this, fix such m, a, a′, and m. Let t = r(a, a′) ⊆ m.

Now fix b, b′ ∈ [X]k such that

• b[m] = a and b′[m] = a′;
• b ∩ b′ = a ∩ a′.

Then b and b′ are aligned with r(b, b′) = m[t] =: m∗, and hence ub and ub′ are
aligned, with r(ub, ub′) = rm∗ . Also, we have um

a = ub[rm] and um
a′ = ub′ [rm].

Thus, if γ ∈ um
a ∩um

a′ , then there must be η, η′ ∈ rm such that γ = ub(η) = ub′(η
′).

Since ub and ub′ are aligned, we must have η = η′. Therefore, we have

otp(um
a ∩ γ) = otp(rm ∩ η) = otp(um

a′ ∩ γ).
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It follows that um
a and um

a′ are aligned.
Suppose in addition that for each b ∈ [X]k we have a condition pb ∈ P such

that upb
= ub . Suppose also that there is a fixed p̄∗ such that p̄b = p̄∗ for all

b ∈ [X]k. Now, for any a ∈ [X∗]<k and any m ∈ [n]|a|, define a condition pma ∈ P
as follows. First, fix any b ∈ [X]k such that b[m] = a. Then, let pma := pb ↾ um

a . By
the previous discussion, it follows that this definition of pma is independent of our
choice of b. Also, if m < k, m ∈ [k]m, and a, a′ ∈ [X∗]m are aligned, then it follows
from our previous discussion and Proposition 3.4 that

• p̄ma = p̄ma′ = p̄∗ ↾ rm; and
• pma and pmb are compatible.

4. A positive consistency result at 2ℵ0

We are now ready to prove our main theorem, a positive consistency result
indicating that Corollary 2.8 is sharp. For concreteness, we are stating and proving
the theorem in a very specific form, but the same proof, mutatis mutandis, will
yield the modified statement in which Add(ω, µ) is replaced by Add(θ, µ) and both
instances of 2ℵ0 in the partition relation are replaced by 2θ, where θ is an arbitrary
regular infinite cardinal less than µ.

Theorem 4.1. Suppose that µ is a weakly compact cardinal, and let P = Add(ω, µ)
be the forcing to add µ-many Cohen reals. Then, in V P, we have

2ℵ0 →htc [2
ℵ0 ]kλ,k

for every k ≥ 2 and every λ < µ.

Proof. In V P, we have 2ℵ0 = µ. Fix an integer k ≥ 2, a cardinal λ < µ, a condition
p ∈ P, and a P-name ċ forced by p to be a function from [µ]k to λ. We will find a

condition q∗ ≤ p, a set Λ ∈ [λ]≤k, and a P-name Ȧ such that q∗ forces both that Ȧ is

an unbounded subset of µ and that (Ȧ, [Ȧ]k∩ċ−1[Λ]) is highly tight-path-connected.
We begin by recursively constructing a ⊆-decreasing sequence ⟨Xj | j < k⟩ of

unbounded subsets of µ exhibiting increasing amounts of uniformity with respect to
ċ. More precisely, we will construct sequences ⟨Xj | j < k⟩, ⟨qb,j | j < k, b ∈ [Xj ]

k⟩,
⟨q̄∗,j | j < k⟩, and ⟨i∗,j | j < k⟩ that satisfy certain requirements, which we
enumerate below. We first need a bit of notation. Throughout the rest of the
paper, we will use the convention that, if X is an unbounded subset of µ, then X∗

denotes the set

{α ∈ X | otp(X ∩ α) is a limit ordinal}.
We are now ready to state the properties we will require of our sequences.

(1) For all j < k, Xj ⊆ µ is unbounded and, if j < k − 1, then Xj+1 ⊆ X∗
j .

(2) For all j < k, we have q̄∗,j ∈ <ω2 and i∗,j < λ.
(3) For all j < k and b ∈ [Xj ]

k, we have qb,j ∈ P, qb,j ≤ p, qb,j ⊩ “ċ(b) = i∗,j”,
and q̄b,j = q̄∗,j .

(4) For all j < k and b ∈ [Xj ]
k, let ub,j := dom(qb,j). Then, for all j < k,

⟨ub,j | b ∈ [X]k⟩ is a uniform k-dimensional ∆-system, as witnessed by a
natural number ρj and a sequence ⟨rm,j | m ⊆ k⟩ of subsets of ρj .

There is one additional requirement, which we need some further notation to
describe. For all j < k, a ∈ [X∗

j ]
<k, and m ∈ [k]|a|, we will define um

a,j and qma,j
by choosing a set b ∈ [Xj ]

k such that b[m] = a and letting um
a,j = ub,j [rm,j ] and
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qma,j = qb,j ↾ um
a,j . Then Discussion 3.6, together with the fact that Xj will satisfy

requirements (1)–(4) above, will imply that this definition is independent of our
choice of b.

We will be interested in particular values of m ∈ [k]<k, which we therefore give
names. For 0 < k′ < k, let m+

k′ := k′ and m−
k′ := k \ (k − k′). Given b ∈ [µ]k, let

b[+k′] := b[m+
k′ ] and b[−k′] := b[m−

k′ ]. In other words, b[+k′] consists of the first
k′-many elements of b and b[−k′] consists of the last k′-many elements of b. (Note
that b[+k′] is the same as b[k′]; we will often include the + for symmetry, though.)
We can now state the final requirement of our construction.

(5) For all j < k− 1 and all b ∈ [Xj+1]
k, the conditions q

m−
1

b[+1],j and q
m+

k−1

b[−(k−1)],j

are compatible with one another, and qb,j+1 extends both of them.

We begin with the first step of our construction. For all b ∈ [µ]k, fix a condition
qb,0 ≤ p that decides the value of ċ(b), say as ib,0 < λ. Set ub,0 := dom(qb,0). Since
µ is weakly compact, we can use Theorem 3.3 to find an unbounded set X0 ⊆ µ, a
fixed collapsed condition q̄∗,0 ∈ <ω2, and a color i∗,0 < λ such that

• for all b ∈ [X0]
k, we have q̄b,0 = q̄∗,0 and ib,0 = i∗,0;

• ⟨ub,0 | b ∈ [X0]
k⟩ is a uniform k-dimensional ∆-system.

Let ρ0 := dom(q̄) and ⟨rm,0 | m ⊆ k⟩ witness that ⟨ub,0 | b ∈ [X0]
k⟩ is a uni-

form k-dimensional ∆-system. This evidently satisfies requirements (1)–(4) of our
construction, and requirement (5) is irrelevant for the first step.

Now suppose that j < k − 1 and we have constructed ⟨Xj′ | j′ ≤ j⟩, ⟨qb,j′ |
j′ ≤ j, b ∈ [Xj′ ]

k⟩, ⟨q̄∗,j′ | j′ ≤ j⟩, and ⟨i∗,j′ | j′ ≤ j⟩ satisfying all relevant
instances of requirements (1)–(5). We will construct Xj+1, ⟨qb,j+1 | b ∈ [Xj+1]

k⟩,
q̄∗,j+1, and i∗,j+1.

Recall that X∗
j is the set of α ∈ Xj such that otp(Xj ∩ α) is a limit ordinal.

Recall also that, for each a ∈ [X∗
j ]

<k and m ∈ [k]|a|, we have defined a set um
a,j and

a condition qma,j . Begin by defining a function fj : [X
∗
j ]

k → 2 by setting fj(b) = 0 if

q
m−

1

b[+1],j and q
m+

k−1

b[−(k−1)],j are compatible, and fj(b) = 1 otherwise. Since µ is weakly

compact and X∗
j is unbounded in µ, we can find an unbounded set Yj ⊆ X∗

j such

that fj ↾ [Yj ]
k is constant.

Claim 4.2. fj(b) = 0 for all b ∈ [Yj ]
k.

Proof. Since fj ↾ [Yj ]
k is constant, it suffices to find a single b ∈ [Yj ]

k for which
fj(b) = 0. Begin by fixing an arbitrary α ∈ Yj . Let ⟨aℓ | ℓ < ω⟩ be a sequence of
pairwise disjoint elements of [Yj \ (α+ 1)]k−1. Since ⟨ub,j | b ∈ [Xj ]

k⟩ is a uniform

k-dimensional ∆-system, we know that ⟨um+
k−1

aℓ,j
| ℓ < ω⟩ is a (1-dimensional) ∆-

system with root u∅
∅,j . Therefore, we can fix ℓ < ω such that u

m+
k−1

aℓ,j
∩u

m−
1

{α},j ⊆ u∅
∅,j .

Notice that q
m+

k−1

aℓ,j
↾ u∅

∅,j = q∅∅,j = q
m−

1

{α},j ↾ u∅
∅,j , so it follows that q

m−
1

{α},j and q
m+

k−1

aℓ,j

are compatible. Let b = {α}∪aℓ. Then b ∈ [Yj ]
k, b[+1] = {α}, and b[−(k−1)] = aℓ,

so fj(b) = 0, as desired. □

We now proceed much as we did in the first step. For each b ∈ [Yj ]
k, fix a

condition qb,j+1 ≤ q
m−

1

b[+1],j ∪ q
m+

k−1

b[−(k−1)],j that decides the value of ċ(b), say as ib,j+1.
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Set ub,j+1 := dom(qb,j+1). Since µ is weakly compact, we can find an unbounded
set Xj+1 ⊆ Yj , a collapsed condition q̄∗,j+1 ∈ <ω2, and a color i∗,j+1 < λ such that

• for all b ∈ [Xj+1]
k, we have q̄b,j+1 = q̄∗,j+1 and ib,j+1 = i∗,j+1;

• ⟨ub,j+1 | b ∈ [Xj+1]
k⟩ is a uniform k-dimensional ∆-system.

It is now easily verified that our construction continues to satisfy requirements (1)–
(5). The only requirement that is not immediately evident from our construction
is the fact that qb,j+1 ≤ p for all b ∈ [Xj+1]

k. But note that, by our assumption,

qb,j ≤ p for all such b. Since q∅∅,j =
⋂

b∈[Hj+1]k
qb,j , it follows that q

∅
∅,j ≤ p. But we

chose qb,j+1 to extend q
m−

1

b[+1],j , which itself extends q∅∅,j , so qb,j+1 ≤ p, as desired.

At the end of the construction, we thin out X∗
k−1 one final time, using the

following claim.

Claim 4.3. There is an unbounded X ⊆ X∗
k−1 such that, for all j < k − 1 and all

b ∈ [X]k, the conditions qb,k−j−2 and q
{j}
b[−1],k−1 are compatible.

Proof. For each j < k− 1, define a function gj : [X
∗
k−1]

k → 2 by letting gj(b) = 0 if

qb,k−j−2 and q
{j}
b[−1],k−1 are compatible, and letting gj(b) = 1 otherwise. Since µ is

weakly compact and X∗
k−1 is unbounded in µ, we can find an unbounded X ⊆ X∗

k−1

such that, for all j < k − 1, gj ↾ [X]k is constant. We claim that, for all j < k − 1
and all b ∈ [X]k, we have gj(b) = 0. To show this, fix j < k − 1. Since gj ↾ [X]k is
constant, it suffices to find a single b ∈ [X]k such that gj(b) = 0.

Fix a0 = {αj′ | j′ < k} ∈ [X]k such that X ∩ α0 is infinite. We now recursively
define an increasing sequence of ordinals ⟨αk+j′ | j′ < j⟩ in X \ (αk−1 + 1). As we
do so, for each ϵ ≤ j, we will set aϵ := {αϵ+j′ | j′ < k}, and we will arrange so that
the conditions {qaϵ,k−ϵ−1 | ϵ ≤ j} are pairwise compatible.

Suppose that j∗ < j and we have defined {αj′ | j′ < k+ j∗}, and therefore have
also defined {aϵ | ϵ ≤ j∗}. Let s :=

⋃
ϵ≤j∗ qaϵ,k−ϵ−1, which we have arranged to be

a condition in P. Notice that we have also already specified

aj∗+1[+(k − 1)] = {αj∗+1+j′ | j′ < k − 1} = aj∗ [−(k − 1)].

Therefore, by requirement (5) of the construction at the beginning of this proof,
we know that

qaj∗ ,k−j∗−1 ≤ q
m+

k−1

aj∗ [−(k−1)],k−j∗−2 = q
m+

k−1

aj∗+1[+(k−1)],k−j∗−2.

Let â := aj∗+1[+(k − 1)]. Now, by Discussion 3.6 the sequence

⟨uâ∪{α},k−j∗−2 | α ∈ X \ (max(â) + 1)⟩

is a (1-dimensional) ∆-system with root u
m+

k−1

â,k−j∗−2. We can therefore find an α ∈

X \ (max(â)+1) such that uâ∪{α},k−j∗−2∩dom(s) ⊆ u
m+

k−1

â,k−j∗−2. Let αk+j∗ be such
an α, which also completes the definition of aj∗+1. Note that

qaj∗+1,k−j∗−2 ↾ u
m+

k−1

â,k−j∗−2 = q
m+

k−1

â,k−j∗−2,

and recall that s ≤ q
m+

k−1

â,k−j∗−2. It follows that s and qaj∗+1,k−j∗−2 are compatible,
as desired, and we can continue with the construction.

After defining ⟨αj′ | j′ < k + j⟩, we are ready to construct b such that gj(b) =
0. We first set b(k − 1) := aj(0), noting that this is the same as a0(j). Let
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s = qa0,k−1 ∪ qaj ,k−j−1. By the previous paragraphs, s is indeed a condition in P.
Recall that we chose a0 so that X∩a0(0) is infinite. We can therefore fix a sequence
⟨dℓ | ℓ < ω⟩ of pairwise disjoint elements of [X ∩ a0(0)]

k−1. For each ℓ < ω, let
bℓ := dℓ ∪ {b(k − 1)}. Since ⟨ub′,k−j−2 | b′ ∈ [X]k⟩ is a uniform k-dimensional ∆-

system, the sequence ⟨ubℓ,k−j−2 | ℓ < ω⟩ is a ∆-system with root u
m−

1

{b(k−1)},k−j−2,

so we can fix ℓ < ω such that ubℓ,k−j−2 ∩ dom(s) ⊆ u
m−

1

{b(k−1)},k−j−2. Set b := bℓ.

Notice that b[−1] = {b(k−1)} = aj [+1]. By requirement (5) from the construction
at the start of the proof of this theorem, we know that

s ≤ qaj ,k−j−1 ≤ q
m−

1

aj [+1],k−j−2 = q
m−

1

b[−1],k−j−2.

Since qb,k−j−2 ↾ u
m−

1

b[−1],k−j−2 = q
m−

1

b[−1],k−j−2, it follows that qb,k−j−2 and s are

compatible. Since s ≤ qa0,k−1 ≤ q
{j}
{a0(j)},k−1 = q

{j}
b[−1],k−1, it follows that qb,k−j−2

and q
{j}
b[−1],k−1 are compatible, so gj(b) = 0, as desired. □

Fix an unbounded X ⊆ X∗
k−1 as given by Claim 4.3, and, as usual, let X∗ be

the set of α ∈ X such that otp(X ∩ α) is a limit ordinal. Let q∗ = q∅∅,k−1. By the

paragraph preceding Claim 4.3, we have q∗ ≤ p. Let Λ = {i∗,j | j < k}, and let Ȧ be

a P-name for the set of α ∈ X∗ such that there exists j < k for which q
{j}
{α},k−1 ∈ Ġ,

where Ġ is the canonical name for the P-generic filter. We claim that q∗ forces that
Ȧ is unbounded in µ and that (Ȧ, [Ȧ]k ∩ ċ−1[Λ]) is highly tight-path-connected.

We first show that q∗ forces that Ȧ is unbounded, in fact establishing the fol-
lowing stronger claim.

Claim 4.4. For all j < k, q∗ forces that Ȧj :=
{
α ∈ X∗

∣∣∣ q{j}{α},k−1 ∈ Ġ
}

is un-

bounded in µ.

Proof. Fix j < k and γ < µ, and fix an arbitrary condition r ≤ q∗. We will find an

α ∈ X∗ \ γ such that q
{j}
{α},k−1 is compatible with r. This clearly suffices to prove

the claim.
By Discussion 3.6, we know that ⟨u{j}

{α},k−1 | α ∈ X∗ \ γ⟩ is a (1-dimensional)

∆-system with root u∅
∅,k−1. Therefore, we can find α ∈ X∗ \ γ such that u

{j}
{α},k−1 ∩

dom(r) ⊆ u∅
∅,k−1. Moreover, we know that q

{j}
{α},k−1 ↾ u∅

∅,k−1 = q∅∅,k−1 = q∗, and

r ≤ q∗. It follows that r and q
{j}
{α},k−1 are compatible, as desired. □

We conclude by proving that q∗ forces that (Ȧ, [Ȧ]k ∩ ċ−1[Λ]) is highly tight-
path-connected. It suffices to prove that q∗ forces the following statement: for all
distinct α, β ∈ Ȧ and all γ < µ, there is a tight path x⃗ in (Ȧ, [Ȧ]k ∩ ċ−1[Λ]) from α
to β such that every vertex in x⃗ except for α and β is greater than γ.

To this end, fix a condition r ≤ q∗, an ordinal γ < µ, and distinct ordinals
α, β ∈ X∗ such that r forces α and β to be in Ȧ. We will find a condition s ≤ r
forcing the existence of a tight path from α to β as in the previous paragraph.

Since r forces α and β to be in Ȧ, we can assume without loss of generality that

there are jα, jβ < k such that r ≤ q
{jα}
{α},k−1 ∪ q

{jβ}
{β},k−1. By switching α and β if

necessary, we can also assume that jα ≤ jβ .
We begin by constructing a, b ∈ [X]k such that
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• α = a(jα) and β = b(jβ);
• a[jβ + 1] ∩ b[jβ + 1] = ∅;
• for all j ∈ (jα, k), we have a(j) ∈ X∗ \ (γ + 1);
• for all j ∈ (jβ , k), we have a(j) = b(j);
• qa,k−1 and qb,k−1 are both compatible with r.

Let us first construct a[jα + 1]. Let {dℓ | ℓ < ω} be a family of pairwise disjoint
elements of [X ∩ α]jα . Since ⟨ub′,k−1 | b′ ∈ [Xk−1]

k⟩ is a uniform k-dimensional ∆-

system, we know that ⟨ujα+1
dℓ∪{α},k−1 | ℓ < ω⟩ is a (1-dimensional) ∆-system, with root

u
{jα}
{α},k−1. We can therefore fix an ℓ < ω such that ujα+1

dℓ∪{α},k−1∩dom(r) ⊆ u
{jα}
{α},k−1.

Let a[jα] = dℓ and a(jα) = α. Note that qjα+1
a[jα+1],k−1 ↾ u

{jα}
{α},k−1 = q

{jα}
{α},k−1 and

r ≤ q
{jα}
{α},k−1; it follows that q

jα+1
a[jα+1],k−1 and r are compatible.

By exactly the same reasoning, we can define b[jβ ] ∈ [X ∩ β]jβ such that b[jβ ] ∩
a[jα] = ∅ and, letting b(jβ) = β, the conditions q

jβ+1

b[jβ+1],k−1 and r are compatible.

We next construct {a(j) | jα < j ≤ jβ}. Let {d′ℓ | ℓ < ω} be a family of
pairwise disjoint elements of [X∗ \ (max{α, β, γ} + 1)]jβ−jα . For each ℓ < ω,
let eℓ = a[jα + 1] ∪ d′ℓ. Since ⟨ub′,k−1 | b′ ∈ [Xk−1]

k⟩ is a uniform k-dimensional

∆-system, it follows that ⟨ujβ+1
eℓ,k−1 | ℓ < ω⟩ is a (1-dimensional) ∆-system with

root ujα+1
a[jα+1],k−1. We can therefore fix an ℓ < ω such that u

jβ+1
eℓ,k−1 ∩ dom(r) ⊆

ujα+1
a[jα+1],k−1. Let {a(j) | jα < j ≤ jβ} = d′ℓ. Note that q

jβ+1

a[jβ+1],k−1 ↾ ujα+1
a[jα+1],k−1 =

qjα+1
a[jα+1],k−1, which we previously showed is compatible with r. It follows that

q
jβ+1

a[jβ+1],k−1 is also compatible with r.

We finally define {a(j) | jβ < j < k} = {b(j) | jβ < j < k}. Let {d′′ℓ | ℓ < ω} be
a family of pairwise disjoint elements of [X∗ \ (max{a(jβ), β, γ} + 1)]k−jβ−1. For
each ℓ < ω, let eaℓ = a[jβ+1]∪d′′ℓ and ebℓ = b[jβ+1]∪d′′ℓ . As above, ⟨ueaℓ ,k−1 | ℓ < ω⟩
and ⟨uebℓ,k−1 | ℓ < ω⟩ are both ∆-systems, with roots u

jβ+1

a[jβ+1],k−1 and u
jβ+1

b[jβ+1],k−1,

respectively. We can therefore fix an ℓ < ω such that ueaℓ ,k−1∩dom(r) ⊆ u
jβ+1

a[jβ+1],k−1

and uebℓ,k−1 ∩ dom(r) ⊆ u
jβ+1

b[jβ+1],k−1. Let {a(j) | jβ < j < k} = {b(j) | jβ <

j < k} = d′′ℓ , which finishes the construction of a and b. Note that qa,k−1 ↾

u
jβ+1

a[jβ+1],k−1 = q
jβ+1

a[jβ+1],k−1, which we previously showed is compatible with r. It

follows that qa,k−1 is compatible with r. The same argument shows that qb,k−1 is
compatible with r. Moreover, since a and b are aligned and q̄a,k−1 = q̄b,k−1 = q̄∗,k−1,
Proposition 3.4 implies that qa,k−1 and qb,k−1 are compatible.

Let s0 = r ∪ qa,k−1 ∪ qb,k−1. By the previous paragraphs, s0 is a condition in P.
We next recursively construct an increasing sequence ⟨δj | j < jβ⟩ of ordinals in X∗

such that δ0 > max{a(k− 1), b(k− 1), γ}. We will then define aj and bj for j ≤ jβ
by letting aj := a[−(k − j)] ∪ {δj′ | j′ < j} and bj := b[−(k − j)] ∪ {δj′ | j′ < j}.
Note that a0 = a and b0 = b. We will construct ⟨δj | j < jβ⟩ in such a way that all
of the following conditions are pairwise compatible with one another:

• s0;
• qaj ,k−j−1 for all j ≤ jβ ;
• qbj ,k−j−1 for all j ≤ jβ ;

• q
{j}
{δj},k−1 for all j < jβ .
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Suppose that j < jβ is fixed and we have constructed {δj′ | j′ < j}. Notice that
this determines the value of aj′ and bj′ for all j

′ ≤ j. Suppose we have carried out
the construction in such a way that

sj := r ∪
⋃
j′≤j

(qaj′ ,k−j′−1 ∪ qbj′ ,k−j′−1) ∪
⋃
j′<j

q
{j′}
{δj′},k−1

is a condition in P. We now show how to find an ordinal δj as desired.
By our construction at the beginning of this proof, we know that qaj ,k−j−1 ≤

q
m+

k−1

aj [−(k−1)],k−j−2 and qbj ,k−j−1 ≤ q
m+

k−1

bj [−(k−1)],k−j−2. For ease of notation, let â :=

aj [−(k − 1)] and b̂ := bj [−(k − 1)]. If j > 0, let δ∗ = δj−1, and if j = 0, let δ∗ =
max{a(k−1), b(k−1), γ}. Since ⟨ub′,k−j−2 | b′ ∈ [X∗]k⟩ is a uniform k-dimensional
∆-system, we know that ⟨uâ∪{δ},k−j−2 | δ ∈ X∗ \ (δ∗ + 1)⟩ and ⟨ub̂∪{δ},k−j−2 | δ ∈

X∗ \ (δ∗ + 1)⟩ are ∆-systems with roots u
m+

k−1

â,k−j−2 and u
m+

k−1

b̂,k−j−2
, respectively. Also,

since ⟨ub′,k−1 | b′ ∈ [X∗]k⟩ is a uniform k-dimensional ∆-system, we know from

Discussion 3.6 that ⟨u{j}
{δ},k−1 | δ ∈ X∗ \ (δ∗ + 1)⟩ is a ∆-system with root u∅

∅,k−1.

We can therefore fix δj ∈ X∗\(δ∗+1) such that uâ∪{δj},k−j−2∩dom(sj) ⊆ u
m+

k−1

â,k−j−2,

ub̂∪{δj},k−j−2 ∩ dom(sj) ⊆ u
m+

k−1

b̂,k−j−2
, and u

{j}
{δj},k−1 ∩ dom(sj) ⊆ u∅

∅,k−1.

Note that we have aj+1 = â ∪ {δj} and bj+1 = b̂ ∪ {δj}. Note also that

qaj+1,k−j−2 ↾ u
m+

k−1

â,k−j−2 = q
m+

k−1

â,k−j−2, and by the beginning of the previous para-

graph we have sj ≤ qaj ,k−j−1 ≤ q
m+

k−1

â,k−j−2. Therefore, qaj+1,k−j−2 is compatible
with sj . By the same argument, qbj+1,k−j−2 is compatible with sj . Also, we have

q
{j}
{δj},k−1 ↾ u∅

∅,k−1 = q∅∅,k−1, and sj ≤ q∅∅,k−1, so q
{j}
{δj},k−1 and sj are compatible.

Moreover, since aj+1 and bj+1 are aligned and q̄aj+1,k−j−2 = q̄bj+1,k−j−2 = q̄∗,k−j−2,
we know that qaj+1,k−j−2 and qbj+1,k−j−2 are compatible. Finally, since we chose X

to satisfy Claim 4.3, and since {δj} = aj+1[−1] = bj+1[−1], we know that q
{j}
{δj},k−1

is compatible with both qaj+1,k−j−2 and qbj+1,k−j−2. Therefore, our choice of δj
satisfies all of our requirements, and we can continue with the construction.

At the end of the construction, let

s = r ∪
⋃
j≤jβ

(qaj ,k−j−1 ∪ qbj ,k−j−1) ∪
⋃
j<jβ

q
{j}
{δj},k−1.

Our construction ensures that s is a condition in P that extends r. Now let x⃗ :=
⟨a(j) | jα ≤ j < k⟩⌢⟨δj | j < jβ⟩⌢⟨β⟩. We claim that s forces x⃗ to enumerate the

vertices in a tight path from α to β in (Ȧ, [Ȧ]k ∩ ċ−1[Λ]). Since every vertex in x⃗
except for α and β is greater than γ, this will finish the proof of the theorem.

First recall that s extends both qa,k−1 and qb,k−1, so, for each jα ≤ j < k,

we have s ≤ q
{j}
{a(j)},k−1, and also s ≤ q

{jβ}
{β},k−1. Finally, for all j < jβ , we have

s ≤ q
{j}
{δj},k−1. Therefore, s forces every vertex in x⃗ to be in Ȧ. Finally, note that

the sequence of edges of the tight path enumerated by x⃗ is ⟨aj | jα ≤ j ≤ jβ⟩⌢⟨bjβ ⟩.
By our construction, for each jα ≤ j ≤ jβ , we have s ≤ qaj ,k−j−1, and hence
s ⊩ “ċ(aj) = i∗,k−j−1 ∈ Λ”. Also, s ≤ qbjβ ,k−jβ−1, so s ⊩ “ċ(bjβ ) = i∗,k−jβ−1 ∈ Λ”.
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Therefore, s does indeed force x⃗ to be a tight path from α to β in (Ȧ, [Ȧ]k∩ ċ−1[Λ]),
thus completing the proof of the theorem. □

We end the paper with a couple of related open questions. In [3], we show that
2ℵ0 →hc [2ℵ0 ]2ℵ0,2

is in fact equiconsistent with the existence of a weakly compact
cardinal. The main tool for showing this is a proof showing that, if λ < µ are
infinite regular cardinals and □(µ) holds, then, µ ̸→hc [µ]

2
λ,<λ. We ask if something

similar holds for our higher-dimensional generalizations.

Question 4.5. Is it the case that, for every 2 < k < ω, the positive partition
relation 2ℵ0 →htc [2

ℵ0 ]kℵ0,k
is equiconsistent over ZFC with the existence of a weakly

compact cardinal?

Question 4.6. Suppose that 2 < k < ω, λ < µ are infinite regular cardinals, and
□(µ) holds. Must it be the case that µ ̸→htc [µ]

k
λ,<λ?
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