EDGE-COLORINGS OF INFINITE COMPLETE GRAPHS

CHRIS LAMBIE-HANSON

1. INTRODUCTION

This note stems from some thinking in my spare time about edge-colorings of
infinite complete graphs. Some of the reults contained in this note are well-known;
none is claimed to be original. The note is not necessarily in a final form and may
be expanded in the future.

The note deals primarily with colorings of the form F : [X]? — w, where X is
a set and [X]? denotes the set of all 2-element subsets of X. If zg,z; are distinct
elements of X, we will abuse notation and write F(xo, 1) instead of F({zo,x1}).
We will focus in particular on colorings which are triangle-free or, more generally,
odd-cycle-free in the following sense.

Definition 1.1. Let F : [X]? — w be a coloring.

(1) If k¥ < w, a mono-chromatic k-cycle with respect to F' is a set of distinct
elements {z; | { < k} C X such that F(xg,z1) = F(z1,22) = ... =
F(xp_9,x5-1) = F(xr_1,%0).

(2) F is triangle-free if there are no mono-chromatic 3-cycles with respect to
F. If k < w, Fis k-cycle-free if there are no mono-chromatic k-cycles with
respect to F.

(3) Fis odd-cycle-free if for all odd k > 3, there are no mono-chromatic k-cycles
with respect to F'. The notion of even-cycle-free is defined analogously.

Definition 1.2. “2 is the set of all functions f : w — 2. If f # g € “2, then
A(f,g9) = min({n | f(n) # g(n)}). A coloring F : [“2]?> — w is a d-coloring if, for
all distinct f,g € “2,

(F(f,9) =n) = (f(n) # g(n)).
Remark 1.3. A d-coloring is easily seen to odd-cycle-free. An example of a 6-

coloring is given by F(f,g) = A(f, g).

Definition 1.4. A coloring F : [X]? — w is a mazimal triangle-free coloring if it
is triangle-free and, for every Y 2 X and every coloring G : [Y]? — w extending F,
G is not triangle-free. Maximal odd-cycle-free colorings are defined analogously.

2. A MAXIMAL TRIANGLE-FREE COLORING
Definition 2.1. If n <w and 0 € "2, then C, = {f € “2| f [ n=0}.

Theorem 2.2. Let F : [“2]?> — w be given by F(f,g9) = A(f,g9). Then F is a
mazimal triangle-free coloring.

Proof. Fix some = ¢ “2, let X = “2U {z}, and suppose for sake of contradiction
that there is a triangle-free coloring G : [X]? — w extending F. We will recursively
construct a specific element h € “2 and use it to derive a contradiction.
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We will define an increasing sequence of natural numbers {n; | k¥ < w)} and
recursively define h [ ng. Let ng = 0. Suppose k < w and ng, h | ng have been
defined. Let my be the least m > nj such that, for some f € Cpp,, G(z, f) = m.
Let fj be such an f, and let ng; = my + 1. Define h [ ng; by letting h(i) = fr (%)
for all n < i <m and h(m) =1 — fr(m).

Let n* = G(x, h).

Claim 2.3. There is 0 < k < w such that n* = ny — 1.

Proof. Let k < w be least such that n* < ng, and let j = k£ — 1. We defined
my; to be the least m > n; such that, for some f € Cypp;, G(x, f) = m. Since
g € Chin,, n* > ny, and G(z,h) = n*, we must have m; < n*. But ny — 1 = my,
so ng — 1 < n* < ng and thus n* = ny. O

Let k* < w be such that n* = ng~ — 1. Consider the function fi+ used in the
definition of h. By construction, we have fi- [ n* = h [ n* and h(n*) = 1— fi(n*).
Thus, G(fr+,h) = A(h, fg=) = n*. Moreover, we know that G(z,h) = n* =
G(z, fr+). Thus, z, fyx-, and h are distinct elements of X such that G(z, fi«) =
G(fr+,h) = G(z, h), contradicting the assumption that G is triangle-free. O

3. MAXIMAL ODD-CYCLE-FREE COLORINGS

Definition 3.1. Let F : [X]? — w and G : [Y]? — w be colorings. F and G are
isomorphic if there is a bijection 7 : ' — G such that, for all distinct xg, 27 € X,
F(zo,21) = G(m(x0), m(21)).

Theorem 3.2. Let F : [X]? — w be an odd-cycle-free coloring. Then there is a
§-coloring G : [“2)> — w and a set Y C “2 such that F is isomorphic to G | [Y]?.

Proof. For each n < w, let T',, = (V,,, E,,) be a graph with vertex set X such that,
for distinet zg,z1 € X, xoE,x1 iff F(zg,21) = n. Since F is an odd-cycle-free
coloring, I', is a bipartite graph. Thus, we can partition X into disjoint pieces
X§, X7 such that, for all ¢ € {0,1} and distinct 2o, 21 € X, F(xo, 1) # n. Define
a function 7 : X — “2 by letting 7w(x) be the unique f € “2 such that, for all
n<w,x €& X?(n).

Claim 3.3. 7 is injective.

Proof. Suppose for sake of contradiction that z¢ # z1 and 7(x¢) = 7(x1) = f. Let
n = F(xg,21). But then g,z € X}}(n), which is a contradiction to the definition
of Xz, X, O

Let Y = 7[X], and define G* : [Y]? — w by G*(r(x¢),m(z1)) = F(z0,71). By
construction, F' is isomorphic to G*.

Claim 3.4. If f #g €Y and G*(f,g) =n, then f(n) # g(n).
Proof. Let f # g € Y, and let f = w(xg), g = 7(x1). If G*(f,g9) = n, then
F(xg,21) =n, so ~xoE,x1, so w(xo)(n) # 7(xz1)(n), so f(n) # g(n). O

Now extend G* to a full coloring G : [+2]? — 2 by letting G(f,g) = A(f,g) for
all {f,g} € [“2)?\ [Y]?. It is clear that G is a J-coloring and that F is isomorphic
to G | [Y]% O

Corollary 3.5. If F : [X]? — w is a mazimal odd-cycle-free coloring, then |X| =
2o,
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Even-cycle-free colorings behave very differently. Every even-cycle-free color-
ing with countably many colors has cardinality at most X;. In fact, we have the
following strong result.

Theorem 3.6. Suppose ¢ : [wo]?> — w, and let k < w. Then there are n* < w

and sets X, Y C wo such that |X| = k, |Y| = w2, and, for every a € X and
B €Y, cla,B) = n*. In particular, there are mono-chromatic 2k-cycles for every
1<k<w.

Proof. For B € w1,ws), let ng < w be such that [{a < w1 | c¢(a, B) = ng}| = V.
Find an unbounded S C [wy,w2) and an n* < w such that, for all 8 € S, ng = n*.
For each B € S, find Xz € [w1]* such that, for all a € Xg, ¢(a, ) = n*. Find an
unbounded Y C S and a fixed X € [w1]* such that, for all 8 € Y, X3 = X. Then
X, Y, and n* are as desired.

To show that there is a mono-chromatic 2k-cycle, take X, Y, and n* as above.
Let X = {ay | £ < k}. Let Z € [Y]*, Z = {B¢ | £ < k}. Then c(ap,By) =
c(Bo, 1) = c(ar, 1) = ... = clag—1,Pr-1) = ¢(Br—1,@1) = n*, giving us a mono-
chromatic 2k-cycle. O

4. COLORING NUMBERS

Definition 4.1. Let G = (V, E) be a graph. The coloring number of G, which we
will denote ¢(G) is the least cardinal k such that there is a well-ordering (v, | & < 1)
of V such that, for every 5 < n, theset Eg := {ae < 8 | {va,v3} € E} has cardinality
less than x.

Definition 4.2. Let x and A be cardinals. Then K, ) is the complete bipartite
graph in which the two sides have cardinality x and A, respectively.

Theorem 4.3. Suppose G = (V, E) is a graph, k is an infinite cardinal, and
c(G) > k™. Then, for every n <w, G contains a copy of K, .+.

Proof. We prove the contrapositive by induction on |G|. Thus, suppose |G| = A,
n < w, and G contains no copy of K, .+. Suppose we have shown by induction
that all subgraphs of G of smaller cardinality have coloring number less than x¥.
We prove that ¢(G) < k*. If A < &, then V can be well-ordered in order-type < x,
50 ¢(G) < k < kT, and we are done. Thus, suppose A > k.

If X € [V]", let f(X) = {u € V |for every v € X, {u,v} € E}. By our
assumption that G contains no copy of K,, ..+, |f(X)| < & for every X € [V]". If
Y CV,let F(Y) = U{f(X) | X € [Y]"}. Since |[Y]"] = |Y], we have |F(Y)| <
max(|Y|,k). Given Y C V', we define H(Y) as follows. Let Yy = Y and, for all
n<w,let Y11 =Y, UF(Y,). Let H(Y) =, ., Yn- Then [H(Y)| < max(|Y], x),
and H(Y') has the property that F(H(Y)) C H(Y).

Let p = cf(X), and let (V; | ¢ < p) be an increasing, continuous sequence of
subsets of V' such that V' = [, L V;. By recursion, we will define a well-ordering
(Vo | @ < A) together with an increasing, continuous sequence of ordinals (A; | i <
wy such that, denoting {v, | & < A;} by U;, we have:

o forall 8 < A, Eg :={a < | {va,vs} € E} has cardinality less than k;
e foralli < p, V; CU;t1;
e foralli < pu, F(U;) CU;.
Let Uy = 0. Mo = 0. Suppose j < p is a limit ordinal and U;, );, and the

relevant well-orderings have been defined for all i < j. Let U; = (J,. ; Ui and
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Aj =sup({\; | ¢ < j}). The well-ordering {v, | & < A;} of U; has been defined in
the previous steps. Finally, suppose i < A and U;, A;, and {v, | @ < A\;} has been
defined. Let U;y; = H(U;UV;). Let W;y1 = U;11 \U;. Then |W;41| < X and, since
F(U;) C U, every element of W, is connected by an edge in E to at most n — 1
elements of U;. By our inductive hypothesis, the subgraph of G induced by W; 4
has coloring number less than £, so W;41 can be well-ordered as {w.,, | v < n} for
some 1 < A such that, for all 6 <7, the set {y < ¢ | {w,,ws} € E} has cardinality
less than k. Let \;4+1 = A; + 7 (ordinal addition), and extend the well-ordering of
U; to a well-ordering of U;11 by letting, for all v < 0, vy, 44 = w,.

At the end of the construction, (v, | & < A) is a well-ordering of V' that is easily
seen to witness ¢(G) < k7. O

Lemma 4.4. Suppose k < \ are infinite cardinals and G = (V, E) is a graph with
|G| = X and ¢(G) = k. Then there is a well-ordering of G of order type A witnessing
¢(G) = k.
Proof. If kK = A, then any well-ordering of G of order type A witnesses ¢(G) = k.
Thus, suppose k& < A. Let p = cf()\), and let (V; | i < p) be an increasing,
continuous sequence of subsets of V' such that:

i Ui<u V; = V;

o forall i < p, [Vi| <A
Let < be a well-ordering of V' witnessing that ¢(G) = k. For each v € V, let
fw)={ueV |u<vand {u,v} € E}. By our assumption, |f(v)| < k. Given
X CV,let F(X)=U{f(v) |ve X} Notethat |[F(X)| <max({x,|X|}).

Given X C V, define H(X) as follows. Let Xo = X. Given X, with n <
w, let X1 = X, UF(X,). Finally, let H(X) = J,., X». Then [H(X)| <
max({x, | X|}) and H(X) has the property that, if v € H(X), u < v, and {u,v} € E,
then v € H(X).

For i < p, let U; = H(V;). Since |V;| < A, we also get |U;| < A. Also note that, if
J < pis a limit ordinal, then U; = UKJ. U;. For i < u,let W; = U; 41\ U;. For each
v € V, there is a unique ¢ < p, which we denote i(v), such that v € W,. Define a
well-ordering < on V' by letting u < v iff one of the following two conditions holds:

(1) i(u) <i(v);

(2) i(u) =i(v) and u < v.
It is easily verified that < is a well-order. Every initial segment of < is contained
in U; for some 7 < p and therefore has order type less than A. Thus, the order type
of < is exactly \. It remains to show that, for every v € V, the set {u € V |u < v
and {u,v} € E} has cardinality less than x. This will follow from the following
claim.

Claim 4.5. For allu,v € V, if u < v and {u,v} € E, then u < v.

Proof. Fix u,v € V such that v < v and {u,v} € E. If i(u) = i(v), then u < v
by definition of <. Thus, suppose i(u) < i(v). v € Uj(y). In particular, v & f(u),
which means it is not the case that v < u and {u,v} € E. Since {u,v} € E, this
implies that u < v. (]

Theorem 4.6. Let k < \ be infinite cardinals, with X reqular. Suppose ¢ : [\T]? —
Kk is a coloring. For alln < k, let G,y = (A1, E,) be a graph with vertex set A such
that, for a < B < \*, {a, B} € E,, if and only if c(ov, B) = n. Then there is n < K
such that c(Gy) > A.



EDGE-COLORINGS OF INFINITE COMPLETE GRAPHS 5

Proof. Suppose not. For each n < &, let (o | £ < A™) be a well-ordering of A"
witnessing that ¢(Gy) < A\. For n < x and § < A", let V' = {a/ | ¢ < {}. Find
¢* large enough so that, for all n < x, A C V/I. Find 8* < A" such that, for
all n < K, p* & Vgi. Find n* < x and an unbounded A C A such that, for all
a < A, c(a, f*) = n*. Then, for every a € A, we have that {a, 8*} € E,+ and «
is enumerated before §* in the well-ordering (ag* | £ < AT). This contradicts the

fact that (o |§ < AT) witnesses ¢(Gy+) < . O
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