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1. Introduction

This note stems from some thinking in my spare time about edge-colorings of
infinite complete graphs. Some of the reults contained in this note are well-known;
none is claimed to be original. The note is not necessarily in a final form and may
be expanded in the future.

The note deals primarily with colorings of the form F : [X]2 → ω, where X is
a set and [X]2 denotes the set of all 2-element subsets of X. If x0, x1 are distinct
elements of X, we will abuse notation and write F (x0, x1) instead of F ({x0, x1}).
We will focus in particular on colorings which are triangle-free or, more generally,
odd-cycle-free in the following sense.

Definition 1.1. Let F : [X]2 → ω be a coloring.

(1) If k < ω, a mono-chromatic k-cycle with respect to F is a set of distinct
elements {xℓ | ℓ < k} ⊆ X such that F (x0, x1) = F (x1, x2) = . . . =
F (xk−2, xk−1) = F (xk−1, x0).

(2) F is triangle-free if there are no mono-chromatic 3-cycles with respect to
F . If k < ω, F is k-cycle-free if there are no mono-chromatic k-cycles with
respect to F .

(3) F is odd-cycle-free if for all odd k ≥ 3, there are no mono-chromatic k-cycles
with respect to F . The notion of even-cycle-free is defined analogously.

Definition 1.2. ω2 is the set of all functions f : ω → 2. If f ̸= g ∈ ω2, then
∆(f, g) = min({n | f(n) ̸= g(n)}). A coloring F : [ω2]2 → ω is a δ-coloring if, for
all distinct f, g ∈ ω2,

(F (f, g) = n) ⇒ (f(n) ̸= g(n)).

Remark 1.3. A δ-coloring is easily seen to odd-cycle-free. An example of a δ-
coloring is given by F (f, g) = ∆(f, g).

Definition 1.4. A coloring F : [X]2 → ω is a maximal triangle-free coloring if it
is triangle-free and, for every Y ⊋ X and every coloring G : [Y ]2 → ω extending F ,
G is not triangle-free. Maximal odd-cycle-free colorings are defined analogously.

2. A maximal triangle-free coloring

Definition 2.1. If n < ω and σ ∈ n2, then Cσ = {f ∈ ω2 | f ↾ n = σ}.

Theorem 2.2. Let F : [ω2]2 → ω be given by F (f, g) = ∆(f, g). Then F is a
maximal triangle-free coloring.

Proof. Fix some x ̸∈ ω2, let X = ω2 ∪ {x}, and suppose for sake of contradiction
that there is a triangle-free coloring G : [X]2 → ω extending F . We will recursively
construct a specific element h ∈ ω2 and use it to derive a contradiction.
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We will define an increasing sequence of natural numbers {nk | k < ω⟩} and
recursively define h ↾ nk. Let n0 = 0. Suppose k < ω and nk, h ↾ nk have been
defined. Let mk be the least m ≥ nk such that, for some f ∈ Ch↾nk

, G(x, f) = m.
Let fk be such an f , and let nk+1 = mk+1. Define h ↾ nk+1 by letting h(i) = fk(i)
for all n ≤ i < m and h(m) = 1− fk(m).

Let n∗ = G(x, h).

Claim 2.3. There is 0 < k < ω such that n∗ = nk − 1.

Proof. Let k < ω be least such that n∗ < nk, and let j = k − 1. We defined
mj to be the least m ≥ nj such that, for some f ∈ Ch↾nj

, G(x, f) = m. Since
g ∈ Ch↾nj

, n∗ ≥ nj , and G(x, h) = n∗, we must have mj ≤ n∗. But nk − 1 = mj ,
so nk − 1 ≤ n∗ < nk and thus n∗ = nk. □

Let k∗ < ω be such that n∗ = nk∗ − 1. Consider the function fk∗ used in the
definition of h. By construction, we have fk∗ ↾ n∗ = h ↾ n∗ and h(n∗) = 1−fk∗(n∗).
Thus, G(fk∗ , h) = ∆(h, fk∗) = n∗. Moreover, we know that G(x, h) = n∗ =
G(x, fk∗). Thus, x, fk∗ , and h are distinct elements of X such that G(x, fk∗) =
G(fk∗ , h) = G(x, h), contradicting the assumption that G is triangle-free. □

3. Maximal odd-cycle-free colorings

Definition 3.1. Let F : [X]2 → ω and G : [Y ]2 → ω be colorings. F and G are
isomorphic if there is a bijection π : F → G such that, for all distinct x0, x1 ∈ X,
F (x0, x1) = G(π(x0), π(x1)).

Theorem 3.2. Let F : [X]2 → ω be an odd-cycle-free coloring. Then there is a
δ-coloring G : [ω2]2 → ω and a set Y ⊆ ω2 such that F is isomorphic to G ↾ [Y ]2.

Proof. For each n < ω, let Γn = (Vn, En) be a graph with vertex set X such that,
for distinct x0, x1 ∈ X, x0Enx1 iff F (x0, x1) = n. Since F is an odd-cycle-free
coloring, Γn is a bipartite graph. Thus, we can partition X into disjoint pieces
Xn

0 , X
n
1 such that, for all i ∈ {0, 1} and distinct x0, x1 ∈ Xn

i , F (x0, x1) ̸= n. Define
a function π : X → ω2 by letting π(x) be the unique f ∈ ω2 such that, for all
n < ω, x ∈ Xn

f(n).

Claim 3.3. π is injective.

Proof. Suppose for sake of contradiction that x0 ̸= x1 and π(x0) = π(x1) = f . Let
n = F (x0, x1). But then x0, x1 ∈ Xn

f(n), which is a contradiction to the definition

of Xn
0 , X

n
1 . □

Let Y = π[X], and define G∗ : [Y ]2 → ω by G∗(π(x0), π(x1)) = F (x0, x1). By
construction, F is isomorphic to G∗.

Claim 3.4. If f ̸= g ∈ Y and G∗(f, g) = n, then f(n) ̸= g(n).

Proof. Let f ̸= g ∈ Y , and let f = π(x0), g = π(x1). If G∗(f, g) = n, then
F (x0, x1) = n, so ¬x0Enx1, so π(x0)(n) ̸= π(x1)(n), so f(n) ̸= g(n). □

Now extend G∗ to a full coloring G : [ω2]2 → 2 by letting G(f, g) = ∆(f, g) for
all {f, g} ∈ [ω2]2 \ [Y ]2. It is clear that G is a δ-coloring and that F is isomorphic
to G ↾ [Y ]2. □

Corollary 3.5. If F : [X]2 → ω is a maximal odd-cycle-free coloring, then |X| =
2ℵ0 .
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Even-cycle-free colorings behave very differently. Every even-cycle-free color-
ing with countably many colors has cardinality at most ℵ1. In fact, we have the
following strong result.

Theorem 3.6. Suppose c : [ω2]
2 → ω, and let k < ω. Then there are n∗ < ω

and sets X,Y ⊆ ω2 such that |X| = k, |Y | = ω2, and, for every α ∈ X and
β ∈ Y , c(α, β) = n∗. In particular, there are mono-chromatic 2k-cycles for every
1 < k < ω.

Proof. For β ∈ [ω1, ω2), let nβ < ω be such that |{α < ω1 | c(α, β) = nβ}| = ℵ1.
Find an unbounded S ⊆ [ω1, ω2) and an n∗ < ω such that, for all β ∈ S, nβ = n∗.
For each β ∈ S, find Xβ ∈ [ω1]

k such that, for all α ∈ Xβ , c(α, β) = n∗. Find an
unbounded Y ⊆ S and a fixed X ∈ [ω1]

k such that, for all β ∈ Y , Xβ = X. Then
X, Y , and n∗ are as desired.

To show that there is a mono-chromatic 2k-cycle, take X, Y , and n∗ as above.
Let X = {αℓ | ℓ < k}. Let Z ∈ [Y ]k, Z = {βℓ | ℓ < k}. Then c(α0, β0) =
c(β0, α1) = c(α1, β1) = ... = c(αk−1, βk−1) = c(βk−1, α1) = n∗, giving us a mono-
chromatic 2k-cycle. □

4. Coloring numbers

Definition 4.1. Let G = (V,E) be a graph. The coloring number of G, which we
will denote c(G) is the least cardinal κ such that there is a well-ordering ⟨vα | α < η⟩
of V such that, for every β < η, the set Eβ := {α < β | {vα, vβ} ∈ E} has cardinality
less than κ.

Definition 4.2. Let κ and λ be cardinals. Then Kκ,λ is the complete bipartite
graph in which the two sides have cardinality κ and λ, respectively.

Theorem 4.3. Suppose G = (V,E) is a graph, κ is an infinite cardinal, and
c(G) ≥ κ+. Then, for every n < ω, G contains a copy of Kn,κ+ .

Proof. We prove the contrapositive by induction on |G|. Thus, suppose |G| = λ,
n < ω, and G contains no copy of Kn,κ+ . Suppose we have shown by induction
that all subgraphs of G of smaller cardinality have coloring number less than κ+.
We prove that c(G) < κ+. If λ ≤ κ, then V can be well-ordered in order-type ≤ κ,
so c(G) ≤ κ < κ+, and we are done. Thus, suppose λ > κ.

If X ∈ [V ]n, let f(X) = {u ∈ V |for every v ∈ X, {u, v} ∈ E}. By our
assumption that G contains no copy of Kn,κ+ , |f(X)| ≤ κ for every X ∈ [V ]n. If
Y ⊆ V , let F (Y ) =

⋃
{f(X) | X ∈ [Y ]n}. Since |[Y ]n| = |Y |, we have |F (Y )| ≤

max(|Y |, κ). Given Y ⊆ V , we define H(Y ) as follows. Let Y0 = Y and, for all
n < ω, let Yn+1 = Yn ∪F (Yn). Let H(Y ) =

⋃
n<ω Yn. Then |H(Y )| ≤ max(|Y |, κ),

and H(Y ) has the property that F (H(Y )) ⊆ H(Y ).
Let µ = cf(λ), and let ⟨Vi | i < µ⟩ be an increasing, continuous sequence of

subsets of V such that V =
⋃

i<µ Vi. By recursion, we will define a well-ordering

⟨vα | α < λ⟩ together with an increasing, continuous sequence of ordinals ⟨λi | i <
µ⟩ such that, denoting {vα | α < λi} by Ui, we have:

• for all β < λ, Eβ := {α < β | {vα, vβ} ∈ E} has cardinality less than κ;
• for all i < µ, Vi ⊆ Ui+1;
• for all i < µ, F (Ui) ⊆ Ui.

Let U0 = ∅. λ0 = 0. Suppose j < µ is a limit ordinal and Ui, λi, and the
relevant well-orderings have been defined for all i < j. Let Uj =

⋃
i<j Ui and
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λj = sup({λi | i < j}). The well-ordering {vα | α < λj} of Uj has been defined in
the previous steps. Finally, suppose i < λ and Ui, λi, and {vα | α < λi} has been
defined. Let Ui+1 = H(Ui∪Vi). Let Wi+1 = Ui+1 \Ui. Then |Wi+1| < λ and, since
F (Ui) ⊆ Ui, every element of Wi+1 is connected by an edge in E to at most n− 1
elements of Ui. By our inductive hypothesis, the subgraph of G induced by Wi+1

has coloring number less than κ+, so Wi+1 can be well-ordered as {wγ | γ < η} for
some η < λ such that, for all δ < η, the set {γ < δ | {wγ , wδ} ∈ E} has cardinality
less than κ. Let λi+1 = λi + η (ordinal addition), and extend the well-ordering of
Ui to a well-ordering of Ui+1 by letting, for all γ < η, vλi+γ = wγ .

At the end of the construction, ⟨vα | α < λ⟩ is a well-ordering of V that is easily
seen to witness c(G) < κ+. □

Lemma 4.4. Suppose κ ≤ λ are infinite cardinals and G = (V,E) is a graph with
|G| = λ and c(G) = κ. Then there is a well-ordering of G of order type λ witnessing
c(G) = κ.

Proof. If κ = λ, then any well-ordering of G of order type λ witnesses c(G) = κ.
Thus, suppose κ < λ. Let µ = cf(λ), and let ⟨Vi | i < µ⟩ be an increasing,
continuous sequence of subsets of V such that:

•
⋃

i<µ Vi = V ;

• for all i < µ, |Vi| < λ.

Let ◁ be a well-ordering of V witnessing that c(G) = κ. For each v ∈ V , let
f(v) = {u ∈ V | u ◁ v and {u, v} ∈ E}. By our assumption, |f(v)| < κ. Given
X ⊆ V , let F (X) =

⋃
{f(v) | v ∈ X}. Note that |F (X)| ≤ max({κ, |X|}).

Given X ⊆ V , define H(X) as follows. Let X0 = X. Given Xn, with n <
ω, let Xn+1 = Xn ∪ F (Xn). Finally, let H(X) =

⋃
n<ω Xn. Then |H(X)| ≤

max({κ, |X|}) andH(X) has the property that, if v ∈ H(X), u ◁ v, and {u, v} ∈ E,
then u ∈ H(X).

For i < µ, let Ui = H(Vi). Since |Vi| < λ, we also get |Ui| < λ. Also note that, if
j < µ is a limit ordinal, then Uj =

⋃
i<j Ui. For i < µ, let Wi = Ui+1 \Ui. For each

v ∈ V , there is a unique i < µ, which we denote i(v), such that v ∈ Wi. Define a
well-ordering ≺ on V by letting u ≺ v iff one of the following two conditions holds:

(1) i(u) < i(v);
(2) i(u) = i(v) and u ◁ v.

It is easily verified that ≺ is a well-order. Every initial segment of ≺ is contained
in Ui for some i < µ and therefore has order type less than λ. Thus, the order type
of ≺ is exactly λ. It remains to show that, for every v ∈ V , the set {u ∈ V | u ≺ v
and {u, v} ∈ E} has cardinality less than κ. This will follow from the following
claim.

Claim 4.5. For all u, v ∈ V , if u ≺ v and {u, v} ∈ E, then u ◁ v.

Proof. Fix u, v ∈ V such that u ≺ v and {u, v} ∈ E. If i(u) = i(v), then u ◁ v
by definition of ≺. Thus, suppose i(u) < i(v). v ̸∈ Ui(u). In particular, v ̸∈ f(u),
which means it is not the case that v ◁ u and {u, v} ∈ E. Since {u, v} ∈ E, this
implies that u ◁ v. □

Theorem 4.6. Let κ < λ be infinite cardinals, with λ regular. Suppose c : [λ+]2 →
κ is a coloring. For all η < κ, let Gη = (λ+, Eη) be a graph with vertex set λ such
that, for α < β < λ+, {α, β} ∈ Eη if and only if c(α, β) = η. Then there is η < κ
such that c(Gη) ≥ λ.
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Proof. Suppose not. For each η < κ, let ⟨αη
ξ | ξ < λ+⟩ be a well-ordering of λ+

witnessing that c(Gη) < λ. For η < κ and ξ < λ+, let V η
ξ = {αη

ζ | ζ < ξ}. Find

ξ∗ large enough so that, for all η < κ, λ ⊆ V η
ξ∗ . Find β∗ < λ+ such that, for

all η < κ, β∗ ̸∈ V η
ξ∗ . Find η∗ < κ and an unbounded A ⊆ λ such that, for all

α < λ, c(α, β∗) = η∗. Then, for every α ∈ A, we have that {α, β∗} ∈ Eη∗ and α

is enumerated before β∗ in the well-ordering ⟨αη∗

ξ | ξ < λ+⟩. This contradicts the

fact that ⟨αη∗

ξ | ξ < λ+⟩ witnesses c(Gη∗) < λ. □
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