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Abstract. Bounded stationary reflection at a cardinal λ is the assertion that

every stationary subset of λ reflects but there is a stationary subset of λ that

does not reflect at arbitrarily high cofinalities. We produce a variety of models
in which bounded stationary reflection holds. These include models in which

bounded stationary reflection holds at the successor of every singular cardinal

µ > ℵω and models in which bounded stationary reflection holds at µ+ but
the approachability property fails at µ.

1. Introduction

The reflection of stationary sets is a topic of fundamental interest in the study
of combinatorial set theory, large cardinals, and inner model theory and provides
a useful tool for the investigation of the tension between compactness and incom-
pactness phenomena. In this paper, we extend results, inspired by a question of
Eisworth, of Cummings and the author [3]. We start by reviewing the relevant
definitions and providing an outline of the structure of the paper.

Definition 1.1. Let λ > ω1 be a regular cardinal.

(1) If S ⊆ λ is a stationary set and α < λ has uncountable cofinality, then S
reflects at α if S ∩ α is stationary in α. S reflects if there is α < λ with
uncountable cofinality such that S reflects at α.

(2) If µ is a singular cardinal and λ = µ+, then Refl(λ) holds if every stationary
subset of λ reflects.

(3) If µ is a singular cardinal, λ = µ+, and S ⊆ λ is stationary, then S reflects
at arbitrarily high cofinalities if, for all κ < µ, there is α < λ such that
cf(α) ≥ κ and S reflects at α.

(4) If µ is a singular cardinal and λ = µ+, then bRefl(λ) (bounded stationary
reflection at λ) holds if Refl(λ) holds but there is a stationary T ⊆ λ that
does not reflect at arbitrarily high cofinalities.

Eisworth [4] asked whether bRefl(λ) is consistent when λ is the successor of a
singular cardinal. bRefl(ℵω+1) is easily seen to be inconsistent, but Cummings and
the author showed in [3] that, for other values of λ, bRefl(λ) is consistent modulo
large cardinal assumptions. In particular, the following theorem was proven.

Theorem 1.2. Suppose there is a proper class of supercompact cardinals. Then
there is a class forcing extension in which, for every singular cardinal µ > ℵω such
that µ is not a cardinal fixed point, bRefl(µ+) holds.
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This left open the question of whether it is consistent that bRefl(µ+) holds for
every singular cardinal µ > ℵω. In this paper, we answer this question affirmatively
and prove a number of variations on Theorem 1.2.

In Section 2, we briefly discuss the notion of approachability before defining some
of the forcing posets to be used throughout the paper and introducing their basic
properties. In Section 3, we prove a general lemma about iteratively destroying
stationary sets. In Section 4, we prove a dense version of Theorem 1.2 by producing

a model in which Refl(ℵω·2+1) holds and, for every stationary S ⊆ Sℵω·2+1

<ℵω , there is
a stationary T ⊆ S that does not reflect at arbitrarily high cofinalities. In Section
5, we prove a global version of Theorem 1.2 by producing a model in which, for
every singular cardinal µ > ℵω, bRefl(µ+) holds.

The proofs of the results in Sections 4 and 5 and in [3] rely heavily on the
approachability property holding in the final model. The relationship between
approachability and stationary reflection is complicated and interesting, and in the
last two sections of this paper we investigate the extent to which we can get bounded
stationary reflection together with the failure of approachability. In Section 6, we
produce a model with a singular cardinal µ such that APµ fails and bRefl(µ+)
holds. In this model µ is a limit of cardinals which are supercompact in an outer
model. In Section 7, we show that this result can be attained with µ = ℵω2·2.

Our notation is for the most part standard. The primary reference for all unde-
fined notions and notations is [7]. If κ < λ are infinite cardinals, with κ regular,
then Sλκ = {α < λ | cf(α) = κ}. Expressions such as Sλ>κ or Sλ≥κ are defined in the

obvious way. If X is a set of ordinals, then nacc(X) (the set of non-accumulation
points of X) is the set {α ∈ X | sup(X ∩ α) < α}, X ′ is the set of limit points of

X (i.e. X \ nacc(X)), and otp(X) is the order type of X. If 〈Pξ, Q̇ζ | ξ ≤ γ, ζ < γ〉
is a forcing iteration with supports of size µ for some cardinal µ, we will frequently
write 
ξ instead of 
Pξ . Conditions of Pγ are thought of as functions p such that

dom(p) ∈ [γ]≤µ and, for all ζ ∈ dom(p), 
ζ “p(ζ) ∈ Q̇ζ .” For ζ < ξ ≤ γ, we let Ṗζ,ξ
be a Pζ-name such that Pξ ∼= Pζ ∗ Ṗζ,ξ.

2. Approachability and forcing preliminaries

Definition 2.1. Let λ be a regular, uncountable cardinal.

(1) Let ~a = 〈aα | α < λ〉 be a sequence of bounded subsets of λ. If γ < λ, γ
is approachable with respect to ~a if there is an unbounded A ⊆ γ such that
otp(A) = cf(γ) and, for every β < γ, there is α < γ such that A ∩ β = aα.

(2) If B ⊆ λ, then B ∈ I[λ] if there is a club C ⊆ λ and a sequence ~a = 〈aα |
α < λ〉 of bounded subsets of λ such that, for every γ ∈ B ∩ C, cf(γ) < γ
and γ is approachable with respect to ~a.

(3) If µ is a singular cardinal and λ = µ+, then APµ is the assertion that
λ ∈ I[λ].

A wealth of information about approachability, including proofs of the statements
in the following remark, can be found in [5, Section 3].

Remark 2.2. Let λ be a regular, uncountable cardinal.

(1) I[λ] is a normal, λ-complete ideal extending the non-stationary ideal on λ.
(2) Sλω ∈ I[λ], and, if κ is a regular uncountable cardinal such that κ+ < λ,

then there is a stationary S ⊆ Sλκ such that S ∈ I[λ].
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(3) Suppose λ<λ = λ, and let ~a = 〈aα | α < λ〉 be a fixed enumeration of all
bounded subsets of λ. If B ⊆ λ, then B ∈ I[λ] iff there is a club C ⊆ λ
such that every element of B ∩ C is approachable with respect to ~a.

Definition 2.3. Let θ be a regular cardinal, and let C be a well-ordering of H(θ).
An internally approachable chain of substructures of H(θ) is a ⊆-increasing, con-
tinuous sequence 〈Mi | i < η〉 such that, for all i < η:

• Mi ≺ (H(θ),∈,C).
• 〈Mk | k ≤ i〉 ∈Mi+1.

The notion of approachability is intimately connected with internally approach-
able chains. The following result is obtained in the proof of Claim 4.4 in [6].

Lemma 2.4. Let λ < θ be regular cardinals, let x ∈ H(θ), and let C be a well-
ordering of H(θ). Suppose S ∈ I[λ]. Then there is a club C ⊆ λ such that, for
every γ ∈ C ∩ S ∩ Sλ>ω, letting κ = cf(γ), there is an internally approachable chain
〈Mi | i < κ〉 of substructures of H(θ) such that:

(1) For all i < κ, |Mi| < κ.
(2) x ∈M0.
(3) If M =

⋃
i<κMi, then γ = sup(M ∩ λ).

Before we introduce specific forcing posets, we recall the notions of directed
closure and strategic closure.

Definition 2.5. Let P be a partial order.

(1) A subset D ⊆ P is directed if, for all p, q ∈ D, there is r ∈ D such that
r ≤ p, q.

(2) Suppose µ is a cardinal. P is µ-directed closed if, whenever D ⊆ P is directed
and |D| < µ, there is q ∈ P such that, for all p ∈ D, q ≤ p.

Definition 2.6. Let P be a partial order and let β be an ordinal.

(1) The two-player game Gβ(P) is defined as follows: Players I and II alter-
nately play entries in 〈pα | 0 < α < β〉, a decreasing sequence of conditions
in P. Player I plays at odd stages, and Player II plays at even stages (includ-
ing all limit stages). If there is a limit stage α < β at which 〈pη | 0 < η < α〉
has no lower bound, then Player I wins. Otherwise, Player II wins.

(2) G∗β(P) is defined just as Gβ(P) except that Player I plays at limit stages
instead of Player II.

(3) P is β-strategically closed if Player II has a winning strategy for the game
Gβ(P). P is strongly β-strategically closed if Player II has a winning strategy
for the game G∗β(P). The notions of (< β)-strategically closed and strongly

(< β)-strategically closed are defined in the obvious way.

Remark 2.7. Note that a µ-directed closed forcing notion is strongly (< µ)-
strategically closed. Also observe that, if P is (< µ)-strategically closed, then
forcing with P does not add any new sequences of ordinals of length < µ.

We now define a number of forcing posets to be used throughout the paper and
state some of their basic properties. We first introduce a poset used to force APµ.
Suppose µ is a singular cardinal, λ = µ+, and λ<λ = λ. Let ~a = 〈aα | α < λ〉 be
an enumeration of the bounded subsets of λ. Let S be the set of ordinals that are
approachable with respect to ~a. The poset A~a consists of closed, bounded subsets of
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S and is ordered by end-extension, i.e. c ≤ d if c∩ (max(d) + 1) = d. The following
is due to Shelah. For a proof, see Fact 2.8 of [12]. It is explicitly shown there
only that A~a is (< λ)-strategically closed, but the proof easily yields the stronger
statement.

Proposition 2.8. A~a is strongly (< λ)-strategically closed.

Since λ<λ = λ, |A~a| = λ, so A~a has the λ+-c.c., and hence forcing with A~a
preserves all cardinalities and cofinalities.

Next, we define a poset to add a stationary set that only reflects at points of
small cofinality. Let κ < µ < λ be infinite, regular cardinals. Conditions in Sλκ,µ
are functions s ∈ γs+12 such that:

(1) γs < λ.
(2) {α ≤ γs | s(α) = 1} ⊆ Sλκ .
(3) {α ≤ γs | s(α) = 1} ∩ β is nonstationary in β for all β ∈ Sλ≥µ.

Conditions are ordered by reverse inclusion. We will sometimes abuse notation and
identify s with {α ≤ γs | s(α) = 1} in statements such as “s does not reflect at any
β ∈ Sλ≥µ.” Note, however, that recovering s from {α ≤ γs | s(α) = 1} requires the
parameter γs.

Proofs of the following facts can be found in Section 2 of [3].

Lemma 2.9. Let S = Sλκ,µ.

(1) S is µ-directed closed.
(2) S is (< λ)-strategically closed.
(3) Let G be S-generic over V , and let S = {α < λ | for some s ∈ G, s(α) = 1}.

Then, in V [G], S is a subset of Sλκ that does not reflect at any ordinal in
Sλ≥µ.

If λ<λ = λ, then |Sλκ,µ| = λ, so, in this case, Sλκ,µ has the λ+-c.c. and forcing

with Sλκ,µ preserves all cardinalities and cofinalities. Lemma 2.10 below, combined

with clause (2) of Remark 2.2, will imply that the generic S ⊆ Sλκ added by Sλκ,µ is
stationary in λ.

For some constructions we will need a variant of Sλκ,µ. Let µ < λ be infinite,

regular cardinals, and let T ⊆ Sλ<µ be stationary. ST,µ is defined exactly as Sλκ,µ
except that, for s ∈ ST,µ, instead of clause (2), we require that, if s(α) = 1, then
α ∈ T . Note that Sλκ,µ = SSλκ ,µ. The purpose of ST,µ is to add a subset of T

that does not reflect at any ordinals in Sλ≥µ. The same arguments used for Sλκ,µ
show that ST,µ is µ-directed closed and (< λ)-strategically closed and, assuming

λ<λ = λ, has the λ+-c.c. If S (with canonical name Ṡ) is the subset of T added by
ST,µ, it is clear that S does not reflect at any ordinals in Sλ≥µ. With an additional
assumption, we can ensure as well that S is stationary.

Lemma 2.10. Suppose there is a stationary T ∗ ⊆ T such that T ∗ ∈ I[λ]. Then


ST,µ “Ṡ is stationary.”

Proof. Let S = ST,µ. Let Ċ be an S-name for a club in λ, and let s ∈ S. We will

find s∗ ≤ s and β < λ such that s∗ 
 “β ∈ Ṡ ∩ Ċ.”
Let θ be a sufficiently large regular cardinal. Suppose first that T ∩ Sλω is sta-

tionary, and find a countable M ≺ (H(θ),∈,C) such that {S, s, Ċ} ⊆ M and
β := sup(M ∩ λ) ∈ T . Let 〈βn | n < ω〉 be an increasing sequence of ordinals from
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M that is cofinal in β. Construct a decreasing sequence 〈sn | n < ω〉 of conditions
from S∩M and an increasing sequence of ordinals 〈αn | n < ω〉 from M such that:

• s0 ≤ s.
• For all n < ω, min(γsn , αn) > βn and sn 
 “αn ∈ Ċ.”

The construction is straightforward. Let s∗ = {(β, 1)} ∪
⋃
n<ω sn. Then s∗ ≤ sn

for all n < ω. Therefore, s∗ 
 “{αn | n < ω} ⊆ Ċ”. In particular, s∗ 
 “β is a limit

point of Ċ, ” so, since Ċ is forced to be a club and s∗(β) = 1, s∗ 
 “β ∈ Ṡ ∩ Ċ.”
Suppose next that T ∩ Sλω is non-stationary. Since T ∗ ∈ I[λ], we can apply

Lemma 2.4 to find M ≺ H(θ) such that:

• β := sup(M ∩ λ) ∈ T ∗ ∩ Sλ>ω.
• |M | = κ, where κ = cf(β).
• M is the union of an internally approachable chain 〈Mi | i < κ〉 of sub-

structures of H(θ), where |Mi| < κ for all i < κ.

• {S, s, Ċ} ⊆M0.

We now construct a decreasing sequence of conditions 〈si | i < κ〉 such that:

• s0 ≤ s.
• For all i < κ, si ∈Mi+1.
• For all i < κ, there is αi ≥ sup(Mi∩λ) such that αi ∈Mi+1 and si 
 “αi ∈
Ċ.”

The construction is a straightforward recursion using the µ-closure of S and main-
taining the additional requirement, made possible by the internal approachabil-
ity of 〈Mi | i < κ〉, that, for every i < κ, 〈sj | j < i〉 ∈ Mi+1. Now let
s∗ = {(β, 1)} ∪

⋃
i<κ si. s∗ is easily seen to be a member of S, and, as in the

previous case, s∗ 
 “β ∈ Ṡ ∩ Ċ.” �

We now introduce a well-known poset used to destroy the stationarity of subsets
of λ, where λ is an uncountable, regular cardinal. Let S be a subset of λ, and let
CU(S) consist of closed, bounded t ⊂ λ such that t∩S = ∅ and, if α ∈ nacc(t), then
cf(α) = ω. (This last condition is not strictly necessary, but it will make certain
technical points simpler.) We denote max(t) by γt. If G is CU(S)-generic over V ,
then S is no longer stationary in V [G]. In general, forcing with CU(S) can collapse
cardinals. However, if S was just added by Sλκ,µ or ST,µ, then the forcing is quite
nice.

Lemma 2.11. Let S = Sλκ,µ (or ST,µ), and let Ṡ be a name for the stationary

subset of λ added by S. Then S ∗ CU(Ṡ) has a λ-closed dense subset.

Proof. Let U be the set of (s, ṫ) ∈ S ∗ CU(Ṡ) such that there is t ∈ V such that
s 
 “ṫ = t” and γs = γt. We first show that U is λ-closed. Let δ < λ be a limit
ordinal, and suppose 〈(sη, ṫη) | η < δ〉 is a strictly decreasing sequence from U,
where, for each η < δ, tη ∈ V witnesses (sη, ṫη) ∈ U. Let γ∗ = sup({γsη | η < δ}),
let s∗ = {γ∗, 0} ∪

⋃
η<δ sη, let t∗ = {γ∗} ∪

⋃
η<δ tη, and let ṫ∗ be an S-name

forced by s∗ to be equal to t∗. Since t∗ witnesses that s∗ does not reflect at γ∗, it is
straightforward to verify that (s∗, ṫ∗) ∈ U and is a lower bound for 〈(sη, ṫη) | η < δ〉.

We next show that U is dense in S ∗CU(Ṡ). To this end, let (s, ṫ) ∈ S ∗CU(Ṡ).
We will find (s∗, ṫ∗) ≤ (s, ṫ) with (s∗, ṫ∗) ∈ U. Since S is (< λ)-strategically closed
and hence does not add any new sequences of ordinals of length < λ, we can find
s0 ≤ s and t ∈ V such that s0 
 “ṫ = t.” Without loss of generality, γs0 ≥ γt. Let
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γ∗ = γs0 +ω. Define s∗ ≤ s0 with γs∗ = γ∗ by letting s∗(α) = 0 for all α ∈ (γs0 , γ
∗],

let t∗ = t ∪ {γ∗}, and let ṫ∗ be an S-name forced by s∗ to be equal to t∗. Then
(s∗, ṫ∗) is as desired. �

We will need the following well-known facts:

Fact 2.12. [9, Lemma 3] Let κ be a regular cardinal, and let κ < λ < µ. Sup-
pose that, in V Coll(κ,<λ), P is a separative, strongly κ-strategically closed partial
order and |P| < µ. Let i be the natural complete embedding of Coll(κ,< λ) into
Coll(κ,< µ) (namely, the identity embedding). Then i can be extended to a com-
plete embedding j of Coll(κ,< λ) ∗ P into Coll(κ,< µ) so that the quotient forcing
Coll(κ,< µ)/j[Coll(κ,< λ) ∗ P] is κ-closed.

Fact 2.13. [11, Theorem 20] Let µ and κ be cardinals. Suppose that APκ holds, S

is a stationary subset of Sκ
+

<µ, and P is a µ-closed forcing poset. Then S remains

stationary in V P.

3. Destroying stationary sets

At many points in this paper, we will want to use a forcing iteration to destroy
the stationarity of many sets. We will also want to ensure that we do not collapse
any cardinals in the process. With this in mind, we prove here a general lemma
which we will use, either directly or via a modification, throughout the remainder
of the paper.

Let λ be a regular cardinal, and assume that λ<λ = λ and 2λ = λ+. Let S
be a λ+-c.c. forcing poset, and let Ṫ be an S-name for a forcing poset such that
S ∗ Ṫ has a dense λ-closed subset (note that, in particular, this implies that S is

λ-distributive and 
S “Ṫ is λ-distributive”).

In V S, let 〈Pξ, Q̇ζ | ξ ≤ λ+, ζ < λ+〉 be a forcing iteration with supports of size

< λ such that, for every ζ < λ+, there is a Pζ-name Ṫζ for a subset of λ such that


Pζ∗Ṫ “Ṫζ is non-stationary” and 
Pζ “Q̇ζ = CU(Ṫζ).” Let P = Pλ+ . By an easy

∆-system argument, P has the λ+-c.c.

Lemma 3.1. S ∗ Ṗ ∗ Ṫ has a dense λ-closed subset.

Proof. For each ζ < λ+, let Ċζ be an S ∗ Ṗζ ∗ Ṫ-name for a club in λ disjoint from

Ṫζ .

Let U0 be the dense λ-closed subset of S ∗ Ṫ that exists by assumption. For
ζ ≤ λ+, let Uζ be the set of (s, ṗ, ṫ) ∈ S ∗ Ṗζ ∗ Ṫ such that:

• (s, ṫ) ∈ U0.
• s decides the value of dom(ṗ).

• For every ξ ∈ dom(ṗ), (s, ṗ � ξ, ṫ) 
S∗Ṗξ∗Ṫ “ max(ṗ(ξ)) ∈ Ċξ”.

We will prove by induction on ζ that Uζ is a dense, λ-closed subset of S ∗ Ṗζ ∗ Ṫ for
all ζ ≤ λ+.

Thus, fix ζ ≤ λ+, and assume we have proven that Uξ is a λ-closed dense subset

of S ∗ Ṗξ ∗ Ṫ for all ξ < ζ. We first show that Uζ is λ-closed. Let β < λ, and
let 〈(sα, ṗα, ṫα) | α < β〉 be a decreasing sequence of conditions from Uζ . Let
X =

⋃
α<β dom(ṗα), and note that X ∈ [ζ]<λ. We will define a lower bound

(s∗, ṗ∗, ṫ∗) ∈ Uζ such that dom(ṗ∗) = X as follows. First, let (s∗, ṫ∗) ∈ U0 be a
lower bound for 〈(sα, ṫα) | α < β〉. Next, we define ṗ∗. For each ξ ∈ X, let αξ be the



BOUNDED STATIONARY REFLECTION II 7

least α < β such that ξ ∈ dom(ṗα), let γ̇ξ be be an S∗Ṗξ-name for sup({max(ṗα(ξ)) |
αξ ≤ α < β}), and let ṗ∗(ξ) be an S ∗ Ṗξ-name for {γ̇ξ} ∪

⋃
αξ≤α<β ṗα(ξ).

We now show by induction on ξ that, for all ξ ≤ ζ, (s∗, ṗ∗ � ξ, ṫ∗) ∈ Uξ and,
for all α < β, (s∗, ṗ∗ � ξ, ṫ∗) ≤ (sα, ṗα � ξ, ṫα). To this end, fix ξ ≤ ζ and suppose
we have established the inductive hypothesis for all η < ξ. We will establish the
inductive hypothesis for ξ. If ξ = 0 or ξ is a limit ordinal, there is nothing to
show. Thus, suppose ξ = ξ0 + 1. If ξ0 6∈ X, there is again nothing to show, so
assume ξ0 ∈ X. It suffices to show that (s∗, ṗ∗ � ξ0, ṫ∗) 
S∗Ṗξ0∗Ṫ

“γ̇ξ0 ∈ Ċξ0 .” For

all αξ0 ≤ α < β,

(sα, ṗα � ξ0, ṫα) 
S∗Ṗξ0∗Ṫ
“ max(ṗα(ξ0)) ∈ Ċξ0 .”

Therefore, by our inductive hypothesis, for all αξ0 ≤ α < β,

(s∗, ṗ∗ � ξ0, ṫ
∗) 
S∗Ṗξ0∗Ṫ

“ max(ṗα(ξ0)) ∈ Ċξ0 .”

Thus, since γ̇ξ0 is a name for sup({max(ṗα(ξ0)) | αξ0 ≤ α < β}) and Ċξ0 is forced

to be a club, (s∗, ṗ∗ � ξ0, ṫ∗) 
S∗Ṗξ0∗Ṫ
“γ̇ξ0 ∈ Ċξ0 .”

We now prove that Uζ is dense in S ∗ Ṗζ ∗ Ṫ. Let (s, ṗ, ṫ) ∈ S ∗ Ṗζ ∗ Ṫ. Since
S is λ-distributive, we may assume that s decides the value of dom(ṗ). Suppose
first that ζ is a successor ordinal, and let ζ = ξ + 1. If ξ 6∈ dom(ṗ), then we
can find u ≤ (s, ṗ, ṫ) in Uξ, and we are done. Thus, suppose ξ ∈ dom(ṗ). Find
(s∗, ṗ′, ṫ∗) ≤ (s, ṗ � ξ, ṫ) such that:

(1) (s∗, ṗ′, ṫ∗) ∈ Uξ.
(2) There is c ∈ V such that (s∗, ṗ′) 
 “ṗ(ξ) = c.”

(3) There is γ ≥ max(c) such that (s∗, ṗ′, ṫ∗) 
 “γ ∈ Ċξ”.

This is possible, because Uξ is a dense, λ-closed subset of S ∗ Ṗξ ∗ Ṫ. Now, define

ṗ∗ ∈ Ṗζ by letting ṗ∗ � ξ = ṗ′ and letting ṗ∗(ξ) be a name forced by (s∗, ṗ′) to be
equal to ṗ(ξ)∪{γ}. It is easy to see that (s∗, ṗ∗, ṫ∗) ≤ (s, ṗ, ṫ) and (s∗, ṗ∗, ṫ∗) ∈ Uζ .

Finally, suppose ζ is a limit ordinal. If cf(ζ) ≥ λ, then dom(ṗ) is bounded below
ζ and we are done by the inductive hypothesis. Thus, assume that κ := cf(ζ) < λ.
Let 〈ζi | i < κ〉 be an increasing, continuous sequence of ordinals cofinal in ζ. We
will construct a sequence 〈(si, ṗi, ṫi) | i < κ〉 such that:

(1) For every i < κ, (si, ṗi, ṫi) ∈ Uζi .
(2) For every i < j < κ, (sj , ṗj , ṫj) ≤ (si, ṗi, ṫi).
(3) For every i < κ, (si, ṗi

_ṗ � [ζi, ζ), ṫi) ≤ (s, ṗ, ṫ).

The construction is straightforward, by recursion on i. Let (s0, ṗ0, ṫ0) ≤ (s, ṗ � ζ0, ṫ)
be in Uζ0 . If i = k + 1, let (si, ṗi, ṫi) ≤ (sk, ṗk

_ṗ � [ζk, ζi), ṫk) be in Uζi . If i is a
limit ordinal, note that 〈(sk, ṗk, ṫk) | k < i〉 is a decreasing sequence of conditions
in Uζi and thus has a lower bound in Uζi . Let (si, ṗi, ṫi) be such a lower bound.
Finally, at the end of the construction, 〈(si, ṗi, ṫi) | i < κ〉 is a decreasing sequence
of conditions in Uζ , so, by the λ-closure of Uζ , it has a lower bound in Uζ . Let
(s∗, ṗ∗, ṫ∗) be such a lower bound. It is easily verified that (s∗, ṗ∗, ṫ∗) ≤ (s, ṗ, ṫ),
thus completing the proof. �

4. Dense bounded stationary reflection

In this section, we construct a model in which there are singular cardinals δ < µ
such that, letting λ = µ+, Refl(λ) holds, and, for every stationary S ⊂ Sλ<δ, there
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is a stationary T ⊆ S such that T does not reflect at any ordinal in Sλ>δ. In our
model, we arrange so that µ = ℵω·2 and δ = ℵω, though the technique is quite
flexible.

Theorem 4.1. Suppose there is a sequence of supercompact cardinals of order type
ω · 2. Then there is a forcing extension in which Refl(ℵω·2+1) holds and, for every

stationary S ⊆ Sℵω·2+1

<ℵω , there is a stationary T ⊆ S such that T does not reflect at

any ordinals in S
ℵω·2+1

>ℵω .

Proof. Assume GCH. Let 〈κi | i ≤ ω · 2 + 1〉 be an increasing, continuous sequence
of cardinals such that:

• κ0 = ω.
• If i is 0 or a successor ordinal, then κi+1 is supercompact.
• If i is a limit ordinal, then κi+1 = κ+i .

For ease of notation, let λ denote κω·2+1, µ = κω·2, and δ = κω. The reason for our
numbering is that, in the final extension, we will have κi = ℵi for all i ≤ ω · 2 + 1.

Let 〈Pi, Q̇j | i ≤ ω · 2, j < ω · 2〉 be a forcing iteration, taken with full supports,

in which, if i < ω · 2 and i 6= ω, then 
Pi “Q̇i = ˙Coll(κi, < κi+1)” and, if i = ω, Q̇i
is a Pi name for trivial forcing. Let P = Pω·2. Standard arguments (see, e.g. [3])
show that, if G is P-generic over V , then, for all i ≤ ω · 2 + 1, κi = (ℵi)V [G]. Let

~̇a be a P-name for an enumeration, of order type λ, of all bounded subsets of λ,
and let Ȧ be a P-name for A~̇a, the forcing poset to shoot a club through the set of

ordinals below λ that are approachable with respect to ~̇a.

Denote V P∗Ȧ by V1. In V1, we will define a forcing iteration 〈Sξ, Ṫζ | ξ ≤ λ+, ζ <
λ+〉. The iteration will use supports of size ≤ µ. For ζ ≤ λ+, let Aζ = {η < ζ | η is

even}. The definition of Ṫζ will depend on whether ζ is even or odd. If ζ < λ+ is

even (including limit ordinals), then choose an Sζ-name Ṫζ for a stationary subset

of Sλ<δ, and let Ṫζ be an Sζ-name for SṪζ ,δ+ , i.e. the forcing to add a subset of Ṫζ

that does not reflect at any points in Sλ>δ. Let Ṡζ be an Sζ+1-name for this subset

of Ṫζ , and let Sζ denote its realization in V
Sζ+1

1 .

If ζ ≤ λ+, then, in V
Sζ
1 , let Uζ be the product

∏
η∈Aζ CU(Sη), where the product

is taken with supports of size ≤ µ. Let U = Uλ+ . If ζ < λ+ is odd, we will choose
an Sζ-name Ṫζ for a subset of Sλ>δ such that 
Sζ∗U̇ζ “Ṫζ is non-stationary,” and let

Ṫζ be an Sζ-name for CU(Ṫζ). Also, fix an Sζ ∗ U̇ζ-name Ċζ for a club in λ disjoint

from Ṫζ .

Before we discuss the choice of the name Ṫζ , we describe some of the properties
of S := Sλ+ . First note that, by a standard ∆-system argument, S has the λ+-c.c.
Also, S is easily seen to be δ+-directed closed. We also claim that it is λ-distributive.
To show this, we define another poset. In V1, for all ξ ≤ λ+, let Vξ be the set of
(s, u) such that:

• s ∈ Sξ.
• u is a function and dom(u) = dom(s) ∩Aξ.
• For all ζ ∈ dom(u), u(ζ) is a closed, bounded subset of λ such that s �

(ζ + 1) 
 “u(ζ) ∩ Ṡζ = ∅” and, if α ∈ nacc(u(ζ)), then cf(α) = ω.
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If (s0, u0), (s1, u1) ∈ Vξ, we let (s1, u1) ≤ (s0, u0) iff s1 ≤ s0 in Sξ and, for every
ζ ∈ dom(u0), u1(ζ) end-extends u0(ζ). If ζ < ξ ≤ λ+, the map (s, u) 7→ (s � ζ, u � ζ)
defines a projection from Vξ to Vζ .

Lemma 4.2. For all ξ ≤ λ+,

(1) For every (s, u) ∈ Vξ, there is (s∗, u∗) ≤ (s, u) such that:
(a) For every ζ ∈ dom(s∗), there is sζ ∈ V1 such that s∗ � ζ 
 “s∗(ζ) =

sζ .”
(b) For every ζ ∈ dom(s∗) ∩Aζ , γs∗(ζ) = max(u(ζ))

(c) For every ζ ∈ dom(s∗) \ Aζ , (s∗ � ζ, u∗ � ζ) 
Vζ “ max(s∗(ζ)) ∈ Ċζ .”
(Note that this will make sense if clause (3) below holds at ζ.)

(2) Sξ is λ-distributive.

(3) Vξ is isomorphic to a dense subset of Sξ ∗ U̇ξ.

Proof. We prove all three statements simultaneously by induction on ξ. First note
that, to show (3), it suffices to show that, for every (s, u̇) ∈ Sξ ∗ U̇ξ, there is s∗ ≤ s
and u∗ ∈ V1 such that s∗ 
 “u̇ = u∗”. This is easily implied by (2), as u̇ can be
thought of as a name for a set of pairs of ordinals of size < λ. Also note that the
set of (s∗, u∗) ∈ Vξ as given in the conclusion of (1) is easily seen to be λ-directed
closed so, since (s, u) 7→ s is a projection from Vξ to Sξ, (1) implies (2) for a fixed
ξ ≤ λ+.

Fix ξ ≤ λ+. Assume we have proven all three statements for all ζ < ξ. We
prove (1) for ξ. Assume first that ξ is a successor ordinal, with ξ = ζ + 1 and
ζ odd. Let (s, u) ∈ Vξ. If ζ 6∈ dom(s), then we are done by (1) for ζ. Thus,
assume ζ ∈ dom(s). Since Sζ is λ-distributive, we can find s′ ≤ s � ζ and sζ ∈ V1
such that s′ 
 “s(ζ) = sζ .”. Now find (s̄, ū) ≤ (s′, u) in Vζ and α > max(sζ)

such that cf(α) = ω and (s̄, ū) 
 “α ∈ Ċζ .” Form (s∗, u∗) ≤ (s, u) by letting
(s∗ � ζ, u∗) ≤ (s̄, ū) witness (1) for ζ and by letting s∗(ζ) be a name forced by
s∗ � ζ to be equal to sζ ∪ {α}. It is easily verified that (s∗, u∗) is as desired.

Next, suppose that ξ = ζ + 1 and ζ is even. Let (s, u) ∈ Vξ, and again assume
that ζ ∈ dom(s). Find s′ ≤ s � ζ and sζ ∈ V1 such that s′ 
 “s(ζ) = sζ .” Find
α with max(u(ζ)), γsζ < α < λ and cf(α) = ω. Form (s∗, u∗) ≤ (s, u) by letting
(s∗ � ζ, u∗ � ζ) ≤ (s′, u � ζ) witness (1) for ζ, letting s∗(ζ) be a name forced by
s∗ � ζ to be a function in α+12 such that s∗(ζ) � (γsζ + 1) = sζ and s∗(ζ)(β) = 0
for all β ∈ (γsζ , α], and letting u∗(ζ) = u ∪ {α}.

Finally, suppose ξ is a limit ordinal, and let (s, u) ∈ Vξ. If dom(s) is bounded
below ξ (in particular, if cf(ξ) ≥ λ), then we are done by the induction hypothesis.
Thus, assume cf(ξ) < λ and dom(s) is unbounded in ξ. Let 〈ξi | i < cf(ξ)〉 be
an increasing, continuous sequence of ordinals cofinal in ξ. Form a sequence of
conditions 〈(si, ui) | i < cf(ξ)〉 such that:

• For all i < cf(ξ), (si, ui) ∈ Vξi and (si, ui) ≤ (s � ξi, u � ξi).
• For all i < k < cf(ξ), (sk � ξi, uk � ξi) ≤ (si, ui).
• For all i < cf(ξ), (si, ui) witnesses (1) for ξi.

The construction is a straightforward recursion; we omit the details. At the end
of the construction, let X =

⋃
i<cf(ξ) dom(si). For ζ ∈ X, let iζ be the least i

such that ζ ∈ dom(si). For iζ ≤ i < cf(ξ), let αζ,i be such that, if ζ is even, then
si � ζ 
 “γsi(ζ) = αζ,i” and, if ζ is odd, then si � ζ 
 “ max(si(ζ)) = αζ,i.” Let
αζ = sup({αζ,i | iζ ≤ i < cf(ξ)}). Form (s∗, u∗) as follows. dom(s∗) = X. For
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ζ ∈ X, let s∗(ζ) be a name forced by s∗ � ζ to be equal to

{(αζ , 0)} ∪
⋃

iζ≤i<cf(ξ)

si(ζ)

if ζ is even and

{αζ} ∪
⋃

iζ≤i<cf(ξ)

si(ζ)

if ζ is odd. For ζ ∈ Aξ ∩X, let

u∗(ζ) = {αζ} ∪
⋃

iζ≤i<cf(ξ)

ui(ζ).

(s∗, u∗) is easily seen to be as required by (1). �

Note that the above proof also shows that, in V P∗Ȧ, S∗U̇ has a dense, λ-directed-
closed subset.

Since, in V1, S has the λ+-c.c., we can, by standard bookkeeping arguments,
assume that we chose our names Ṫζ so that, in V S

1 , every stationary subset of Sλ<δ
was considered as Ṫζ for some even ζ < λ+ and every subset of Sλ>δ was considered

as Ṫζ for cofinally many odd ζ < λ+. In V S
1 , let A = Aλ+ and U = Uλ+ . By the

distributivity of S, all conditions of U are in V1.
Let G be P-generic over V , let H be A-generic over V [G], and let I be S-generic

over V [G ∗H]. V [G ∗H ∗ I] will be our final model. For i < ω · 2, let Gi be the Pi-
generic filter induced by G, and, for ζ < λ+, let Iζ be the Sζ-generic filter induced
by I. Note that, in V [G ∗ H] (and hence in all further extensions preserving λ),
APµ holds. Thus, by Lemma 2.10, for all even ζ < λ+, Sζ (the set added by Tζ) is
stationary in V [G ∗H ∗ Iζ+1]. Because the remainder of the iteration is δ+-closed
and S ⊆ Sλ<δ, Sζ is stationary in V [G ∗H ∗ I] by Fact 2.13.

We have therefore arranged so that, in V [G∗H∗I], for every stationary T ⊆ Sλ<δ,
there is a stationary S ⊆ T that does not reflect at any ordinals in Sλ>δ. Also,

suppose that, in V [G ∗H ∗ I], T ⊆ Sλ>δ and 
U “T is non-stationary.” By standard
chain condition arguments, there is ξ < λ+ such that T ∈ V [G ∗ H ∗ Iξ] and, in
V [G ∗H ∗ Iξ], 
Uξ “T is non-stationary.” Thus, by our bookkeeping for the choice

of Ṫζ at odd ζ, we have that T is already non-stationary in V [G ∗H ∗ I].
We now argue that Refl(λ) holds in V [G ∗ H ∗ I]. So, let T ⊆ λ be stationary

in V [G ∗ H ∗ I]. We can assume, by shrinking T if necessary, that there is i0 <
ω · 2 such that T ⊆ Sλκi0 . We first consider the case in which i0 < ω. Let i∗ =

i0 + 2. In V [Gi0+1], κi∗ remains supercompact. Fix an elementary embedding
j : V [Gi0+1] → M [Gi0+1] witnessing that κi∗ is λ+-supercompact. In V [Gi0+1],

Qi0+1 = Coll(κi0+1, < κi∗) and j(Qi0+1) = Coll(κi0+1, < j(κi∗)). Since Pi∗,ω·2∗Ȧ∗Ṡ
is strongly κi0+1-strategically closed, we can apply Fact 2.12 to observe that

j(Qi0+1) ∼= Pi0+1,ω·2 ∗ Ȧ ∗ Ṡ ∗ Ṙ,

where Ṙ is forced to be κi0+1-closed. Thus, letting J be R-generic over V [G∗H ∗I],
we can extend j to j : V [Gi∗ ]→M [G ∗H ∗ I ∗ J ].

We would like to extend j further to have domain V [G ∗H ∗ I]. To do this, we

define a master condition (p∗, ȧ∗, ṡ∗) ∈ j(Pi∗,ω·2 ∗ Ȧ ∗ Ṡ) in M [G ∗ H ∗ I ∗ J ], i.e.
a condition (p∗, ȧ∗, ṡ∗) such that, for all (p, ȧ, ṡ) ∈ Gi∗,ω·2 ∗ H ∗ I, (p∗, ȧ∗, ṡ∗) ≤
j((p, ȧ, ṡ)). The definition is straightforward. Let η = sup(j“λ). For i∗ ≤ i < ω · 2,
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we let p∗(i) be a name for
⋃
p∈G j(p(i)). p

∗ ∈ j(Pi∗,ω·2) by the fact that j(Pi∗,ω·2)

is j(κi∗)-directed closed.
Next, define ȧ∗ to be a name forced by p∗ to be equal to {η} ∪

⋃
a∈H j(a). The

only thing to check here is that η is approachable with respect to j(~a). Note that,
in M [G ∗H ∗ I ∗ J ], cf(λ) = κi0+1, and we can find an unbounded A ⊆ λ such that
otp(A) = κi0+1 and, for all β < λ, A ∩ β ∈ V [Gi0+1]. Let B = j“A. For all β < λ,
A ∩ β is enumerated in ~a as aα for some α < λ. Therefore, B ∩ j(β) = j(aα). In
particular, every initial segment of B is enumerated in j(~a) with an index smaller
than η, so B witnesses that η is approachable with respect to j(~a).

Finally, since j(Ṡ) is forced to be j(δ+)-directed-closed, it is straightforward to
find a name ṡ∗ forced by (p∗, ȧ∗) to be a lower bound for {j(ṡ) | ṡ ∈ I}. (p∗, ȧ∗, ṡ∗)

is then as desired, and, letting G+ ∗ H+ ∗ I+ be j(Pi∗,ω·2 ∗ Ȧ ∗ Ṡ)-generic over
V [G ∗H ∗ I ∗ J ] with (p∗, ȧ∗, ṡ∗) ∈ G+ ∗H+ ∗ I+, we can extend j to

j : V [G ∗H ∗ I]→M [G ∗H ∗ I ∗ J ∗G+ ∗H+ ∗ I+].

Now, by standard arguments (see e.g. Proposition 1.1 in [3]), if T does not reflect
in V [G ∗H ∗ I], then j“T is non-stationary in η in M [G ∗H ∗ I ∗ J ∗G+ ∗H+ ∗ I+],
which further implies that T is non-stationary V [G∗H ∗I ∗J ∗G+ ∗H+ ∗I+]. Since
G+ ∗H+ ∗ I+ is generic for (< j(κi∗))-strategically-closed forcing, it could not have
added any new subsets of λ, so T is already non-stationary in V [G ∗ H ∗ I ∗ J ].
However, since J is generic for κi∗ -closed forcing, T ⊆ Sλ<κi∗ , and APµ holds in
V [G ∗H ∗ I], Fact 2.13 implies that T is non-stationary in V [G ∗H ∗ I], which is a
contradiction. Thus, T reflects in V [G ∗H ∗ I].

Next, suppose i0 > ω. Again, let i∗ = i0 + 2 and let j : V [Gi0+1] → M [Gi0+1]

witness that κi∗ is λ+-supercompact. Pi∗,ω·2 ∗ Ȧ ∗ Ṡ ∗ U̇ has a dense strongly κi0+1-
strategically closed subset, so, again applying Fact 2.12,

j(Qi0+1) ∼= Pi∗,ω·2 ∗ Ȧ ∗ Ṡ ∗ U̇ ∗ Ṙ,

where Ṙ is forced to be κi0+1-closed. Note that, by previous arguments, it is not the
case that, in V [G ∗H ∗ I], 
U “T is non-stationary”. Thus, letting J be U-generic
over V [G ∗H ∗ I] such that T remains stationary in V [G ∗H ∗ I ∗ J ], and letting K
be R-generic over V [G∗H ∗I ∗J ], we can lift j to j : V [Gi∗ ]→M [G∗H ∗I ∗J ∗K].
We can extend j further to

j : V [G ∗H ∗ I]→M [G ∗H ∗ I ∗ J ∗K ∗G+ ∗H+ ∗ I+]

using a master condition argument as in the previous case, exploiting the fact that

S ∗ U̇ has a dense λ-closed subset in V P∗Ȧ. And again, exactly as in the previous
case, we can argue that T must reflect in V [G ∗ H ∗ I], for otherwise it would be
non-stationary in V [G ∗H ∗ I ∗ J ]. �

5. Global bounded stationary reflection

In this section, we improve upon Theorem 1.2 by producing, from large cardinal
assumptions, a model in which bounded stationary reflection holds at every possible
successor of a singular cardinal.

Theorem 5.1. Suppose there is a proper class of supercompact cardinals. Then
there is a class forcing extension in which, for every singular cardinal µ > ℵω,

Refl(µ+) holds and there is a stationary subset of Sµ
+

ω that does not reflect in

Sµ
+

>ℵω .
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Proof. Assume GCH. Let 〈κi | i ∈ On〉 be an increasing, continuous sequence of
cardinals such that:

• κ0 = ω.
• If i is a limit ordinal or a successor of a limit ordinal, then κi+1 = κ+i .
• If i is not a limit ordinal or a successor of a limit ordinal, then κi+1 is

supercompact.

We may assume that, if i is a limit ordinal, then κi is singular by cutting the
universe off at the least regular κi with i limit.

We define a class forcing iteration 〈Pi, Q̇i | i ∈ On〉, taken with full supports.

If i = 0, i = 1, or i is a successor of a successor ordinal, then let Q̇i be such that

i “Q̇i = Coll(κi, < κi+1).” If i = ω or i is a successor of a limit ordinal, let Q̇i be
a Pi-name for trivial forcing.

It remains to define Q̇i when i > ω is a limit ordinal. Fix such an i, and move
temporarily to V Pi . Let ~ai be an enumeration of the bounded subsets of κi+1 in
order type κi+1, and let Ai be the poset to shoot a club through the set of ordinals

below κi+1 that are approachable with respect to ~ai. In V Pi∗Ȧi , let Si be Sκi+1
ω,κω+1 .

In V Pi∗Ȧi∗Ṡi , we will define an iteration, 〈Tiξ, U̇iζ | ξ ≤ κ+i+1, ζ < κ+i+1〉, taken with

supports of size κi and, letting Ti = Ti
κ+
i+1

, we will let Q̇i be a Pi-name for Ai∗Ṡi∗Ṫi.

If p ∈ Pi+1, we will let p(i)0, p(i)1, and p(i)2 denote the Ai, Ṡi, and Ṫi parts of
p(i), respectively. If ζ < κ+i+1, we will let p(i) � ζ denote (p(i)0, p(i)1, p(i)2 � ζ).

Moreover, for ζ < κ+i+1, and k < i we will let Pk,i+1 � ζ denote Pk,i ∗ Ȧi ∗ Ṡi ∗ Ṫiζ .
Suppose ζ < κ+i+1 and we have defined Tiζ . We describe how to define U̇iζ . For

all limit ordinals ω < i′ ≤ i, let Si′ be the stationary subset of S
κi′+1
ω added by Si′ .

For all ω < k < i, with k a successor ordinal, let Xi
k be the set of limit ordinals

in (k, i], and let Cζk,i be the poset defined in V Pk as follows. Conditions are pairs

(p, c) such that:

• p ∈ Pk,i+1 � ζ.
• c is a function, and dom(c) = Xi

k.
• For all i′ ∈ dom(c), c(i′) is a Pk,i′ -name for a closed, bounded subset of

κi′+1 and p � [k, i′)_p(i′)0
_p(i′)1 
 “c(i′) ∩ Ṡi′ = ∅.”

(p′, c′) ≤ (p, c) if p′ ≤ p and, for all i′ ∈ dom(c), p′ � i′ 
 “c′(i′) end-extends c(i′).”

The map (p, c) 7→ p is clearly a projection from Cζk,i to Pk,i+1 � ζ. Let Vζk,i ∈
V Pi+1�ζ be the quotient poset, so Cζk,i ∼= Pk,i+1 � ζ ∗ V̇ζk,i. Let Ṫ iζ be a Tiζ-name for

a subset of S
κi+1

>κω such that, for every successor ordinal k with ω < k < i, 
Vζk,i
“Ṫ iζ

is non-stationary,” and let U̇iζ be a Tiζ-name for CU(Ṫ iζ). If k is a successor ordinal

with ω < k < i, notice that, if ζ < ζ ′ ≤ κ+i+1, there is a natural projection from Cζ
′

k,i

to Cζk,i. Let Ck,i = Cκ
+
i+1

k,i , and let Vk,i be the quotient forcing over Pk,i+1 in V Pi+1 .

Notice also that, if (p, c) ∈ Ck,i, then there is ζ < κ+i+1 such that (p, c) ∈ Cζk,i and

that, if i′ ∈ (k, i) is a limit ordinal, then

{p � (i′ + 1), c � (i′ + 1)| | (p, c) ∈ Cζk,i} = Ck,i′

and Cζk,i ∼= Ck,i′ ∗ Ċζi′+1,i.
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Note that, in V Pi∗Ȧi∗Ṡi , Ti has the κ+i+1-c.c., so, by standard bookkeeping ar-

guments, we can arrange so that every canonical Ti-name for a subset of S
κi+1

>κω

was considered as Ṫ iζ for cofinally many ζ < κ+i+1. Thus, we can arrange that, in

V Pi+1 , if T ⊆ S
κi+1

>κω is such that, for every successor ordinal k < i, 
Vk,i “T is

non-stationary,” then T is already non-stationary in V Pi+1 .

Lemma 5.2. Let ω < k < i, with k a successor ordinal and i a limit ordinal, and

let ζ ≤ κ+i+1. In V Pk , for every ` ∈ Xi
k and every ξ < κ+`+1, let Ċξ` be a Cξk,`-name

for a club in κ`+1 disjoint from Ṫ `ξ .

(1) For every (p, c) ∈ Cζk,i, there is (p∗, c∗) ≤ (p, c) such that:

(a) There is h ∈
∏
`∈Xik

κ`+1 such that, for all ` ∈ Xi
k,

p∗ � `_p∗(`)0 
 “γp∗(`)1 = h(`) = max(c∗(`)).”

(b) For every ` ∈ Xi
k, for every ξ < κ+`+1 (or ξ < ζ, if ` = i),

(p∗ � `_p∗(`) � ξ, c∗ � (`+ 1)) 
 “ξ 6∈ dom(p∗(`)2) or max(p∗(`)2(ξ)) ∈ Ċξ` .”

(2) Pk,i+1 � ζ is κk-distributive.

Proof. First note that, by now-familiar arguments, the set of conditions (p∗, c∗) that

satisfy (1)(a) and (1)(b), which we will denote by Cζ,∗k,i (or just C∗k,i if ζ = κ+i+1), is
easily seen to be strongly κk-strategically closed. This will be useful in the inductive
proof of (1) and also immediately yields (2) from the corresponding instance of (1).

We proceed by induction on i and, for fixed i, by induction on ζ ≤ κ+i+1. Thus,

let k < i be given, let ζ = 0, and let (p, c) ∈ Cζk,i. First, suppose that i = k + ω.

In this case, find p′ ≤ p � [k, i)_p(i)0 and αi < κi+1 such that cf(αi) = ω and
p′ 
 “γp(i)1 ,max(c(i)) < αi.”. Form (p∗, c∗) by letting p∗ � i_p∗(i)0 = p′, letting

p∗(i)1 be a name forced by p′ to be equal to the function in αi+12 extending p(i)1
that is constantly zero on (γp(i)1 , αi + 1), and letting c∗(i) be a name forced by p′

to be equal to c(i) ∪ {α}.
Next, suppose i = i′ + ω for some limit ordinal i′ ∈ (k, i). Find p′ ≤ p � i_p(i)0

and αi < κi+1 such that cf(αi) = ω and p′ 
 “γp(i)1 ,max(c(i)) < αi.”. Define
(p∗, c∗) by letting

(p∗ � [k, i′ + 1), c∗ � [k, i′ + 1)) ≤ (p′ � [k, i′ + 1), c � [k, i′ + 1))

witness (1) for Ck,i′ , letting

p∗ � [i′ + 1, i)_p∗(i)0 = p′ � [i′ + 1, i)_p′(i)0,

letting p∗(i)1 be a name forced by p′ to be equal to the function in αi+12 extending
p(i)1 that is constantly zero on (γp(i)1 , αi + 1), and letting c∗(i) be a name forced
by p′ to be equal to c(i) ∪ {α}.

Finally, suppose that i is a limit of limit ordinals. We first suppose that cf(i) <
κk. Let 〈iη | η < cf(i)〉 be an increasing, continuous sequence of limit ordinals from
(k, i) that is cofinal in i. Find p′ ≤ p � i_p(i)0 and αi as in the previous cases.
Recursively construct a sequence 〈(pη, cη) | η < cf(i)〉 such that:

• For all η < cf(i), (pη, cη) ∈ Ck,iη and satisfies (1).
• For all η < cf(i), (pη, cη) ≤ (p′ � (iη + 1), c � (iη + 1)).
• For all η < η′ < cf(i), (pη′ � (iη + 1), cη′ � (iη + 1)) ≤ (pη, cη).
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• For all i′ ∈ Xi
k, if η∗ is the least η such that i′ ≤ iη, then, for all η∗ ≤ η <

cf(i), pη � i′ forces that 〈pδ(i′)0 | η∗ ≤ δ ≤ η〉 is a partial run of G∗κk(Ai′)
with Player II playing according to her winning strategy.

The construction is straightforward by the inductive hypothesis, and it is straight-
forward to use 〈(pη, cη) | η < cf(i)〉 to, by taking unions (and, where appropriate,
closures) along all coordinates and adding αi to the end of the ith coordinates as
in the previous cases, get a (p∗, c∗) as desired.

If κk ≤ cf(i), then find k < k′ < i with k′ a limit ordinal and cf(i) < κk′+1.
Move temporarily to V Pk′+1 , and interpret (p � [k′ + 1, i + 1), c � [k′ + 1, i + 1)) in

Cζk′+1,i as (p0, c0). For every ` ∈ Xi
k′+1 and ξ < κ+`+1, the quotient forcing of Cξk,`

over Pk,k′+1 ∗Cξk′+1,` has the κ+k′+1-c.c., so we can find a Cξk′+1,`-name Ḋξ
` for a club

in κ`+1 that is forced by the quotient forcing of Cξk,` over Pk,k′+1 to be a subset

of Ċξ` . Use the argument from the previous paragraph to find (p1, c1) ≤ (p0, c0)

satisfying (1) for Cζk′+1,i and the set of Ḋξ
` ’s as witnessed by h1 ∈

∏
`∈Xi

k′+1
κ`+1.

Let (ṗ1, ċ1) and ḣ1 be Pk,k′+1-names for (p1, c1) and h1, respectively. Since Pk,k′+1

satisfies the κk′+2-c.c., there is a function h∗1 ∈
∏
`∈Xi

k′+1
κ`+1 in V Pk such that


 “ḣ1 ≤ h∗1” and cf(h∗1(`)) = ω for all ` ∈ Xi
k′+1. Find p2 ≤ p � [k, k′ + 1) forcing

that (ṗ1, ċ1) satisfies (1) as witnessed by h∗1. Now form (p∗, c∗) by letting

(p∗ � [k, k′ + 1), c∗ � [k, k′ + 1)) ≤ (p2, c � [k, k′ + 1))

witness (1) for Ck,k′ and letting

(p∗ � [k′ + 1, i+ 1), c∗ � [k′ + 1, i+ 1)) = (ṗ1, ċ1).

We now deal with the case ζ > 0. First, suppose ζ = ζ0+1. We may assume that
p � i_p(i)0_p(i)1 decides whether ζ0 ∈ dom(p(i)2). If it decides ζ0 6∈ dom(p(i)2),
then we are done by the inductive hypothesis applied to ζ0. Otherwise, find (p′, c′) ≤
(p � i_p(i) � ζ0, c) and α < κi+1 such that cf(α) = ω and

(p′, c′) 
 “ max(p(i)2(ζ0)) < α and α ∈ Ċζ0i .”

Form (p∗, c∗) by letting (p∗ � i_p∗(i) � ζ0, c∗) ≤ (p′, c′) witness (1) for Cζ0k,i and

letting p∗(i)2(ζ0) be a name forced by p′ to be equal to p(i)2(ζ0) ∪ {α}.
Suppose next that ζ is a limit ordinal. If cf(ζ) ≥ κi+1, then, strengthening p if

necessary, we may assume (p, c) ∈ Cζ0k,i for some ζ0 < ζ, and we are done by the

induction hypothesis. Thus, suppose µ := cf(ζ) < κi. Also assume that µ < κk. If
µ ≥ κk, the same trick we used in the ζ = 0 case will work. Let 〈ζη | η < µ〉 be an
increasing, continuous sequence of ordinals, cofinal in ζ, and construct a sequence
〈(pη, cη) | η < µ〉 such that:

• For all η < µ, (pη, cη) ∈ Cζηk,i and satisfies (1).

• For all η < µ, (pη, cη) ≤ (p � i_p(i) � ζη, c).
• For all η < η′ < µ, (pη′ � i_pη′(i) � ζη, cη′) ≤ (pη, cη).
• For all ` ∈ Xi

k and all η < µ, pη � ` forces that the sequence 〈pδ(`)0 | δ ≤ η〉
is a partial run of the game G∗κk(A`) with Player II playing according to
her winning strategy.

The construction is a straightforward recursion, and, as in the ζ = 0 case, it is easy
to see that 〈(pη, cη) | η < µ〉 gives us a (p∗, c∗) ≤ (p, c) witnessing (1). �
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Note that C∗k,i has the following closure property. We omit the proof, which is
straightforward.

Claim 5.3. Suppose ω < k < i, with k a successor ordinal and i a limit ordinal.
In V Pk , suppose A ⊆ C∗k,i is a directed set of size < κk. For each ` ∈ Xi

k, let

γ` = sup({γp(`)1 | (p, c) ∈ A}) and suppose that, for all ` ∈ Xi
k, 
Pk,` “γ` is

approachable with respect to ~̇a`.” Then A has a lower bound in C∗k,i.

Lemma 5.2 has the following immediate corollary.

Corollary 5.4. Let k < i be ordinals, with k a successor and i a limit.

(1) In V Pk , C∗k,i is a dense, strongly κk-strategically closed subset of Ck,i.
(2) In V Pi , Pi,i+1 is κi+1-distributive.

Proof. (1) is immediate. (2) follows from the Lemma 5.2 together with the obser-
vation that, if κ is a singular cardinal and a poset P is κ-distributive, then it is also
κ+-distributive. �

The fact that, for all i < k, Pi,k is κi-distributive in V Pi means that V P =⋃
i∈On V

Pi is a model of ZFC. It is also easy to see that, for all i ∈ On, κi = ℵV P

i .

If i > ω is a limit ordinal, then, in V Pi∗Ȧi∗Ṡi , Si is a stationary subset of S
κi+1
ω that

does not reflect at any ordinals in S
κi+1

>κω . Since Ti ∗ Ṗi+1,k is countably-closed for

all k > i+ 1, Si remains stationary in V P.
It remains to show that, if i > ω is a limit ordinal, then Refl(κi+1) holds in

V P. Thus, fix a limit ordinal i > ω. Since, for every k > i + 1, Pi+1,k adds no
new subsets of κi+1 (recall that Pi+1,i+2 is trivial forcing if i is a limit ordinal), it
suffices to check that Refl(κi+1) holds in V Pi+1 .

Let G = Gi+1 be Pi+1-generic over V . For k < i + 1, let Gk be the Pk-generic
filter induced by G. If ω < k < i + 1 and k is a limit ordinal, let Gk,0 be the

Pk ∗ Ȧk-generic induced by G, and let Gk,1 be the Pk ∗ Ȧk ∗ Ṡk-generic induced by
G. For k < k′ ≤ i + 1, let Gk,k′ be the Pk,k′ -generic filter over V [Gk] induced by
G. Let T ∈ V [G] be a stationary subset of κi+1. By shrinking T if necessary, we
may assume that there is k < i such that T ⊆ Sκi+1

κk .
We first assume that k < ω. Let k∗ = k + 2. In V [Gk+1], κk∗ is still supercom-

pact, so fix j : V [Gk+1] → M [Gk+1] witnessing that κk∗ is κi+1-supercompact. In
V [Gk+1], j(Qk+1) = Coll(κk+1, < j(κk∗), and Pk∗,i+1 is strongly κk+1-strategically

closed, so, by Fact 2.12, j(Qk+1) ∼= Pk+1,i+1∗Ṙ, where Ṙ is forced to be κk+1-closed.
Thus, letting H be R-generic over V [G], we can extend j to j : V [Gk∗ ]→M [G∗H].

To lift j further to have domain V [G], we define a condition p∗ ∈ j(Pk∗,i+1) such
that p∗ ≤ j(p) for all p ∈ Gk∗,i+1. We recursively define p∗(α) for α ∈ [k∗, j(i+1)).
Thus, suppose α ∈ [k∗, j(i+ 1)) and we have defined p∗ � [k∗, α). If α = ω or α is
the successor of a limit ordinal, then p∗(α) is a name for the sole condition in the
trivial forcing. If α is the successor of a successor ordinal, then the α-th iterand in
j(Pk∗,i+1) is a Levy collapse that is j(κk∗)-directed closed, so we can let p∗(α) be
a name forced by p∗ � [k∗, α) to be a lower bound for {j(p)(α) | p ∈ Gk∗,i+1}.

If α is a limit ordinal, let

γα = sup({j(g)(α) | g ∈
∏
`≤i

κ`+1 ∩ V }).
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Let p∗(α)0 be a name forced by p∗ � [k∗, α) to be equal to

{γα} ∪
⋃

p∈Gk∗,i+1

j(p)(α)0.

This will be forced to be a condition provided that γα is forced to be approachable
with respect to the entry corresponding to α in j(〈~a` | ` ∈ Xi

k〉). The argument
showing that this is true can be found in Case 1 of the proof of Theorem 3.1 in
[3]. The S and T parts of the α-th iterand in j(Pk∗,i+1) are forced to be j(κω+1)-
directed closed, so we can find (p∗(α)1, p

∗(α)2) that is forced by p∗ � α_p∗(α)0 to
be a lower bound for {(j(p)(α)1, j(p)(α)2) | p ∈ Gk∗,i+1}.

Let I be j(Pk∗,i+1)-generic over V [G ∗H] with p∗ ∈ I, and lift j to j : V [G] →
M [G ∗H ∗ I]. By familiar arguments, we can now argue that, if T does not reflect
in V [G], then T is not stationary in V [G ∗ H ∗ I], so there is a club C in κi+1

with C ∈ V [G ∗H ∗ I] such that C ∩ T = ∅. But I is generic for j(κ∗)-distributive
forcing (recall j(κ∗) > κi+1) and thus could not have added C, so C ∈ V [G ∗H].
H is generic for κk+1-closed forcing and, in V [G], APκi holds and T is a stationary
subset of S

κi+1

<κk+1
. Thus, by Fact 2.13, T remains stationary in V [G ∗H]. This is a

contradiction, so T reflects in V [G].
Next, suppose k > ω. Let k < i∗ < i, with i∗ a successor ordinal large enough

so that κi∗ > i and it is not the case that 
Vi∗+1,i
“T is non-stationary.” Let

k∗ = i∗+ 1, and fix j : V [Gi∗ ]→M [Gi∗ ] witnessing that κk∗ is κi+1-supercompact
in V [Gi∗ ]. Recall that Ck∗,i has a dense, strongly κi∗ -strategically-closed forcing.
Thus, by Fact 2.12,

j(Qi∗) ∼= Qi∗ ∗ Ċk∗,i ∗ Ṙ ∼= Pi∗,i+1 ∗ V̇k∗,i ∗ Ṙ,

where Ṙ is forced to be κi∗ -closed. Let H be Vk∗,i-generic over V [G] such that T
remains stationary in V [G ∗H], let I be R-generic over V [G ∗H], and extend j to
j : V [Gk∗ ]→M [G ∗H ∗ I].

We again define a condition p∗ ∈ j(Pk∗,i+1) such that p∗ ≤ j(p) for all p ∈
Gk∗,i+1. Since i < κk∗ , the domain of conditions in j(Pk∗,i+1) is [k∗, i + 1). If
` ∈ [k∗, i+ 1) is a limit ordinal, let γ` = sup(j“κ`+1). Note that

γ` = sup({γp(`)1 | (p, c) ∈ (G ∗H) ∩ C∗k∗,i})

and that, as in the previous case and proven in [3], γ` is forced to be approachable

with respect to j(~̇a`). Thus, by Claim 5.3, {j(p, c) | (p, c) ∈ (G ∗H) ∩ C∗k∗,i} has a

lower bound. Let (p∗, c∗) be such a lower bound and note that, since C∗k∗,i is dense

in Ck∗,i, p∗ ≤ j(p) for all p ∈ Gk∗,i+1.
As in the previous case, let J be j(Pk∗,i+1)-generic with p∗ ∈ J and lift j to

j : V [G] → M [G ∗ H ∗ I ∗ J ]. As before, we argue that, if T does not reflect in
V [G], then it is non-stationary in V [G ∗H ∗ I ∗ J ]. As before, we can pull the non-
stationarity back to V [G ∗H]. However, we chose H so that T remains stationary
in V [G ∗H]. This is a contradiction, so T reflects in V [G]. �

6. Bounded stationary reflection without approachability

In the previous results, in order to obtain a model in which µ is a singular cardinal
and bRefl(µ+) holds, we forced APµ. In the final two sections of this paper, we
produce models in which bRefl(µ+) holds and APµ fails. We first find such a model
in which µ is a limit of large cardinals.
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Let 〈κ0n | n < ω〉 and 〈κ1n | n < ω〉 be increasing sequences of supercompact
cardinals such that, letting κiω = sup({κin | n < ω}) for i ∈ {0, 1}, we have κ0ω < κ10.
For i ∈ {0, 1}, let λi = (κiω)+.

Theorem 6.1. Assume GCH. There is a cardinal-preserving forcing extension in
which:

(1) Refl(λ1) holds.

(2) There is a stationary S ⊆ Sλ1
ω that does not reflect at any ordinals in Sλ1

≥λ0
.

(3) APκ1
ω

fails.

Proof. By first forcing with Laver’s preparatory forcing [8], we may assume that,
for all i ∈ {0, 1} and n < ω, κin remains supercompact in any forcing extension

by a κin-directed closed forcing poset. Let S = Sλ1

ω,λ0
, and let Ṡ be a name for the

stationary subset of Sλ1
ω added by S. In V S, let T = CU(S).

In V S, define a forcing iteration 〈Pξ, Q̇ζ | ξ ≤ λ+1 , ζ < λ+1 〉, taken with supports

of size κ1ω, as follows. If ζ < λ+1 and Pζ has been defined, choose a Pζ-name Ṫζ for

a subset of Sλ1

≥λ0
such that: 
Pζ∗Ṫ “Ṫζ is not stationary,” and let Q̇ζ be a Pζ-name

forced to be equal to CU(Ṫζ). Let P = Pλ+
1

. By standard bookkeeping arguments,

we can arrange so that, in V S∗Ṗ, if X ⊆ Sλ1

≥λ0
is such that 
T “X is nonstationary,”

then X is already nonstationary in V S∗Ṗ.
Let G be S-generic over V , and let H be P-generic over V [G]. We claim that

V [G ∗ H] is the desired model. By Lemma 3.1, S ∗ Ṗ ∗ Ṫ has a λ1-closed dense
subset (in fact, an examination of the proof shows that it actually has a λ1-directed

closed dense subset). Thus, S∗ Ṗ is λ1-distributive. Also, S∗ Ṗ is easily seen to have
the λ+1 -c.c., so forcing with it preserves cardinals. Let S be the set enumerated by⋃
G. In V [G], S is a stationary subset of Sλ1

ω that does not reflect at any ordinal

in Sλ1

≥λ0
. Note that P is λ0-directed closed, so S remains stationary in V [G ∗ H]

and still does not reflect at any ordinals in Sλ1

≥λ0
.

We now verify that Refl(λ1) holds in V [G∗H]. To this end, let T be a stationary
subset of λ1. Without loss of generality, by shrinking T if necessary, we can assume
that there is µ < κ1ω such that T ⊆ Sλ1

µ . First, suppose µ < κ0ω. Let n∗ < ω be such

that µ < κ0n∗ . Since S ∗ Ṗ is λ0-directed closed in V , κ0n∗ remains supercompact
in V [G ∗ H]. Let j : V [G ∗ H] → M witness that κ0n∗ is λ1-supercompact. Let
δ = sup(j“λ1). As in earlier arguments, j(T ) reflects at δ in M . By elementarity,
T reflects at some ordinal α < λ1 in V [G ∗H].

Next, suppose λ0 ≤ µ < κ1ω. Let n∗ < ω be such that µ < κ1n∗ . As T ⊆ Sλ1

≥λ0
is

stationary in V [G ∗H], it is not the case that 
T “T is non-stationary.” Thus, let
I be T-generic over V [G ∗H] such that T remains stationary in V [G ∗H ∗ I]. Since

S∗Ṗ∗Ṫ has a λ1-directed closed dense subset, κ1n∗ is supercompact in V [G∗H∗I]. Let
j : V [G∗H ∗I]→M witness that κ1n∗ is λ1-supercompact. By the same arguments
as in the previous case, T reflects at some ordinal α < λ1 in V [G ∗ H ∗ I]. Since
this statement is obviously downward absolute, it reflects in V [G ∗H].

It remains to show that APκ1
ω

fails in V [G ∗H]. However, this follows from the

fact that κ00 is supercompact in V [G ∗H] and the fact that, by a result of Shelah,
if cf(µ) < κ < µ and κ is supercompact, then APµ fails (see [2, Theorem 18.1] for
a proof). �
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7. Down to smaller cardinals

We would like to bring the results of the previous section down to smaller car-
dinals. By the following result of Chayut [1], assuming some cardinal arithmetic,
ℵω2+1 is the smallest we can hope for.

Theorem 7.1. Suppose n < ω, ℵω·n is strong limit, 2ℵω·n = ℵω·n+1, and Refl(ℵω·n+1)
holds. Then APℵω·n holds.

We do not succeed in bringing the result from Section 6 down to ℵω2+1, but we
can attain it at ℵω2·2+1. In this section we adopt the convention, for notational
simplicity, that if we are working in a forcing extension V P of V , then G(P) denotes
the P-generic filter over V used to define the extension.

Theorem 7.2. Suppose there is an increasing sequence of supercompact cardinals
of order type ω · 2. Then there is a forcing extension in which Refl(ℵω2·2+1) holds,

APℵω2·2
fails, and there is a stationary subset of S

ℵω2·2+1
ω that does not reflect at

any ordinals in S
ℵω2·2+1

ℵω2+1
.

Proof. We follow, to a large extent, Section 3 of [10], and all references to [10] are
to Section 3, specifically. Assume GCH. Let 〈κ0n | n < ω〉 and 〈κ1n | n < ω〉 be two
increasing sequences of supercompact cardinals such that, for all n < ω, κ0n < κ10.
Assume that the supercompactness of each κin is indestructible under κin-directed
closed forcing. For i < 2, let κiω = sup({κin | n < ω}), and let λi = (κiω)+. For
notational simplicity, let κ0−1 = ω1 and κ1−1 = λ0. For i < 2 and n < ω, let

Cin =
∏
m≥n Coll((κim−1)++, < κim), where the product is taken with full support.

Define an equivalence relation on C1
0 by declaring that c0 ≡ c1, where ci =

〈ci(n) | n < ω〉, if c0(n) = c1(n) for all but finitely many n < ω. Let C∗ be
the forcing notion whose conditions are equivalence classes from C1

0 and such that
[c1] ≤ [c0] if, for all but finitely many n < ω, c1(n) ≤ c0(n). The following is proven
in [10, Lemma 7].

Proposition 7.3. For all n < ω, there is a projection from C1
n onto C∗. Hence,

C∗ is λ1-distributive. Moreover, if G is C∗-generic over V and n < ω, then C1
n/G

has the λ1-c.c.

In V C∗ , let S = Sλ1

ω,λ0
. Let Ṡ be an S-name for the stationary subset of Sλ1

ω added

by S and, in V C∗∗Ṡ, let T = CU(Ṡ). Also in V C∗∗Ṡ, let Q = Qλ+ be an iteration of
length λ+1 with supports of size κ1ω of forcings to destroy certain stationary subsets

of Sλ1

≥λ0
. As in Section 3, we can arrange so that, in V C∗ , S ∗ Q̇ ∗ Ṫ has a dense

λ1-closed subset and if, in V C∗∗Ṡ∗Q̇, T ⊆ Sλ1

≥λ0
and 
T “T is non-stationary,” then

T is already non-stationary in V C∗∗Ṡ∗Q̇. Since T is weakly homogeneous, we in fact

get that, for all T ⊆ Sλ1

≥λ0
in V C∗∗Ṡ∗Q̇, if T is stationary, then 
T “T is stationary.”

For n < ω, note that C0
n+1 × (C1

0 ∗ Ṡ ∗ Q̇) is (κ0n)++-directed closed. Let Ḟ 0
n

denote a name for a fine, normal ultrafilter on Pκ0
n
(λ1) in V C0

n+1×(C
1
0∗Ṡ∗Q̇). Let U0

n

be its projection to a normal ultrafilter on κ0n. Note that U0
n ∈ V and, by the

homogeneity of the forcing, we may assume that the trivial condition forces U0
n to

be the projection of a fine, normal ultrafilter on Pκ0
n
(λ1). Similarly, define a normal

ultrafilter U1
n on κ1n such that the trivial condition in C1

n+1 ∗ Ṡ ∗ Q̇ ∗ Ṫ forces U1
n to

be the projection of a fine, normal ultrafilter on Pκ1
n
(λ1).
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For i < 2 and n < ω, let M i
n denote the transitive collapse of Ult(V,U in), and

let jin : V → M i
n be the associated embedding. Let T0

n denote Coll((κ0n)+ω·2+2, <
j0n(κ0n)) as defined in M0

n. M |= “there are j0n(κ0n) maximal antichains of T0
n.” Since

|j0n(κ0n)| = (κ0n)+ and T0
n is (κ0n)+-closed, we can build in V a T0

n-generic filter over
M0
n. Let G0

n be such a filter. Similarly, let T1
n denote Coll((κ1n)+ω+2, < j1n(κ1n)) as

defined in M1
n, and fix G1

n, a T1
n-generic filter over M1

n.
We now define diagonal Prikry forcing notions P0 and P1, which are slightly

modified versions of the forcing in [10]. Elements of P0 are of the form p =
〈αp0, . . . , α

p
n−1, 〈A

p
k | n ≤ k < ω〉, gp0 , . . . , gpn, f

p
0 , . . . , f

p
n−1, 〈F

p
k | n ≤ k < ω〉, 〈gpk |

n < k < ω〉〉, where

• For all i < n, αpi is inaccessible and κ0i−1 < αpi < κ0i .

• For all n ≤ k < ω, Apk ∈ U0
k and, for all α ∈ Apk, α is inaccessible.

• For all i < n, gpi ∈ Coll((κ0i−1)++, < αpi ) and fpi ∈ Coll((αpi )
+ω·2+2, < κ0i ).

• For all n ≤ k < ω, gpk ∈ Coll((κ0k−1)++, < κ0k) is such that, for all α ∈ Apk,

gpk ∈ Coll((κ0k+1)++, < α).
• For all n ≤ k < ω, F pk is a function with domain Apk such that, for all
α ∈ Apk, F pk (α) ∈ Coll(α+ω·2+2, < κ0k) and j0k(F pk )(κ0k) ∈ G0

k.

n is the length of p and is denoted `(p). If q, p ∈ P0, then q ≤ p if:

• `(q) ≥ `(p).
• For all i < `(p), αqi = αpi and fqi ≤ f

p
i .

• For all i < ω, gqi ≤ g
p
i .

• For all `(q) ≤ k < ω, Aqk ⊆ A
p
k and, for all α ∈ Aqk, F qk (α) ≤ F pk (α).

• For all `(p) ≤ k < `(q), αqk ∈ A
p
k and fqk ≤ F

p
k (αqk).

P1 is defined in the same way, with the following changes:

• For all −1 ≤ i < ω, every occurrence of κ0i in the definition of P0 is replaced
by κ1i in the definition of P1 and every occurrence of U0

i is replaced by U1
i .

• If p ∈ P1 and i < `(p), then fpi ∈ Coll((αpi )
+ω+2, < κ1i ). If `(p) ≤ k < ω

and α ∈ Apk, then F pk (α) ∈ Coll(α+ω+2, < κ1j ) and j1k(F pk )(κ1k) ∈ G1
k.

Following [10], if p ∈ Pi, we call 〈αpk | k < `(p)〉 its α-part, 〈Apk | `(p) ≤ k < ω〉
its A-part, 〈fpk | k < `(p)〉 its f -part, 〈gpk | k ≤ `(p)〉 its g-part, 〈F pk | `(p) ≤ k < ω〉
its F -part, and 〈gpk | `(p) < k < ω〉 its C-part. The α-part, g-part, and f -part
together comprise the lower part of p, denoted a(p). If k ≤ `(p), let p � k denote
〈〈αpm | m < k〉, 〈gpm | m ≤ k〉, 〈fpm | m < k〉〉. Note that p � `(p) = a(p).

If q, p ∈ Pi, then we say q is a length-preserving extension of p if q ≤ p and
`(q) = `(p). If k ≤ `(p), then q is a k-length-preserving extension of p if q is a
length-preserving extension of p and q � k = p � k. We say q is a trivial extension
of p if it is an `(p)-length-preserving extension of p.

Pi satisfies a form of the Prikry lemma. A proof can be found in [10, Lemma 3].

Lemma 7.4. Let p ∈ Pi, let k ≤ `(p), and let D be a dense open subset of Pi. Then
there is a k-length-preserving extension q ≤ p such that, if q∗ ≤ q and q∗ ∈ D, then,
if q∗∗ ≤ q, `(q∗∗) = `(q∗), and q∗∗ � k = q∗ � k, then q∗∗ ∈ D.

The Prikry lemma can be applied to see that the only cardinals below λi that are
collapsed by forcing with Pi are those explicitly in the scope of the Levy collapses
interleaved into the forcing notion. In particular, the following claim immediately
follows.
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Claim 7.5. Let k < ω. In V P0 , if cf(α) = (αpk)+ω·2+1 (equivalently, cfV (α) =
(αpk)+ω·2+1) for some p ∈ G(P0) and A is an unbounded subset of α, then there is
an unbounded B ⊆ A such that B ∈ V . Similarly, in V P1 , if cf(α) = (αpk)+ω+1 for
some p ∈ G(P1) and A is an unbounded subset of α, then there is an unbounded
B ⊆ A such that B ∈ V .

Other arguments, found in [10, Lemma 5], imply that all cardinals ≥ λi are
preserved as well. Note that, by the Prikry lemma, forcing with P1 does not add
any new bounded subsets of λ++

0 , so P0 has the same basic properties in V P1 as it
has in V .

The following is proven in [10], in Lemma 7 and the discussion following it.

Proposition 7.6. There is a projection from P1 onto C∗ such that the quotient
forcing has the λ1-c.c.

Our final model will be V P0×(P1∗Ṡ∗Q̇). Let S be the subset of Sλ1
ω added by S. In

V C∗∗Ṡ, S is stationary and does not reflect at any ordinals in Sλ1

≥λ0
. In V C∗∗Ṡ, Q is

λ0-closed, so S remains stationary in V C∗∗Ṡ∗Q̇. In V C∗ , P1/G(C∗) has the λ1-c.c.

and S∗ Q̇ is the projection of a forcing poset with a dense λ1-closed subset (namely

S ∗ Q̇ ∗ Ṫ), so, by Easton’s Lemma, P1/G(C∗) has the λ1-c.c. in V C∗∗Ṡ∗Q̇, so S is

stationary in V P1∗Ṡ∗Q̇. Finally, |P0| = λ0, so S remains stationary in V P0×(P1∗Ṡ∗Q̇).

We now verify that every stationary subset of λ1 reflects in V P0×(P1∗Ṡ∗Q̇). Thus,

let T ∈ V P0×(P1∗Ṡ∗Q̇) be a stationary subset of λ1, and let Ṫ be a name for it.
Let (i, n) be the lexicographically least pair such that T ∩ Sλ1

<κin
is stationary. By

shrinking T if necessary, we may assume that, for some (p0, (p1, ṡ, q̇)) ∈ G(P0 ×
(P1 ∗ Ṡ ∗ Q̇)), (p0, (p1, ṡ, q̇)) forces that Ṫ is a stationary subset of Sλ1

<κin
. Moreover,

if i = 1, we may assume that (p0, (p1, ṡ, q̇)) forces Ṫ to be a stationary subset of

Sλ1

≥λ0
as well.

For each α ∈ T , let (pα0 , (p
α
1 , ṡ

α, q̇α)) ∈ G(P0×(P1∗Ṡ∗Q̇)), with (pα0 , (p
α
1 , ṡ

α, q̇α)) ≤
(p0, (p1, ṡ, q̇)), force that α ∈ Ṫ . Since |P0| = λ0 and there are only κ1ω lower parts in
P1, we may assume there are p∗0 ∈ P0 and a∗, a lower part for P1, such that, for every
α ∈ T , pα0 = p∗0 and a(pα1 ) = a∗. We may also assume that p0 = p∗0, a(p1) = a∗, and

(p0, (p1, ṡ, q̇)) forces that T ∗ := {α | for some (p′0, (p
′
1, ṡ
′, q̇′)) ∈ G(P0× (P1 ∗ Ṡ ∗ Q̇))

such that p′0 = p0, p′1 is a trivial extension of p1, and p′1 
 “(ṡ′, q̇′) ≤ (ṡ, q̇)”,

(p′0, (p
′
1, ṡ
′, q̇′)) forces that α ∈ Ṫ} is stationary. Let Ṫ ∗ be a name for T ∗. Finally,

we may assume that `(pi) ≥ n. We will find an extension of (p0, (p1, ṡ, q̇)) forcing

that Ṫ reflects. There are two cases to consider.
Case 1: i = 0. Let n∗ = `(p0). Move to V C0

n∗+1×(C
1
0∗Ṡ∗Q̇), requiring that the

C-part of p0 is in G(C0
n∗+1) and

(〈gp1k | k < ω〉, ṡ, q̇) ∈ G(C1
0 ∗ Ṡ ∗ Q̇).

For n∗+1 ≤ m < ω, let G(C0
m) be the generic filter induced by G(C0

n∗+1). Similarly,
for m < ω, let G(C1

m) be the generic filter induced by G(C1
0). Let P∗ be the set of

(r0, r1) ∈ P0 × P1 such that (r0, r1) ≤ (p0, p1), the C-part of r0 is in G(C0
`(r0)+1),

and the C-part of r1 is in G(C1
`(r1)+1). The proof of Lemma 6 from Section 3 of [10]

shows that forcing with P∗ over V C0
n∗+1×(C

1
0∗Ṡ∗Q̇) adds a V -generic filter for P0×P1.

In V C0
n∗+1×(C

1
0∗Ṡ∗Q̇), let T̂ be the set of α < λ1 such that, for some r1 such that r1
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is a trivial extension of p1 and (p0, r1) ∈ P∗, and, for some (ṙ2, ṙ3) such that

(p0, r1) 
 “(ṙ2, ṙ3) ∈ G(Ṡ ∗ Q̇) and (ṙ2, ṙ3) ≤ (ṡ, q̇)”,

we have (p0, (r1, ṙ2, ṙ3)) 
 “α ∈ Ṫ ∗”

Lemma 7.7. T̂ is stationary.

Proof. Suppose not. Then, in V C0
n∗+1×(C

1
0∗Ṡ∗Q̇), there is a club C in λ1 such that

C ∩ T̂ = ∅. Force with P∗. In V (C0
n∗+1×(C

1
0∗Ṡ∗Q̇))∗P∗ , T̂ ⊇ T ∗. Thus, C ∩ T ∗ = ∅.

V C0
n∗+1×(C

1
0∗Ṡ∗Q̇) is a forcing extension of V (C∗∗Ṡ∗Q̇) by a λ1-c.c. forcing poset, so

there is a club D ⊆ C such that D ∈ V (C∗∗Ṡ∗Q̇). But V (C∗∗Ṡ∗Q̇) ⊆ V P0×(P1∗Ṡ∗Q̇) and

T ∗ is stationary in V P0×(P1∗Ṡ∗Q̇). This contradicts the fact that D ∈ V P0×(P1∗Ṡ∗Q̇)

is club in λ1 and disjoint from T ∗. �

In V C0
n∗+1×(C

1
0∗Ṡ∗Q̇), κ0n∗ remains supercompact, and λ1 = (κ0n∗)

+ω·2+1. Fix a
fine, normal measure U∗ on Pκ0

n∗
(λ1) such that U∗ projects to U0

n∗ . Let θ be a

sufficiently large regular cardinal, and let A denote an expansion of (H(θ),∈) by a
well-ordering of H(θ) and constants for all relevant sets. The following are standard
applications of supercompactness.

Lemma 7.8. Let E0 = {X ∈ Pκ0
n∗

(λ1) | for some B ≺ A, we have X = B ∩ λ1,

|X| = |B|, and X ∈
⋂
A∈U∗∩BA}. Then E0 ∈ U∗.

Lemma 7.9. Let E1 = {X ∈ Pκ0
n∗

(λ1) | X ∩ κ0n∗ is inaccessible, otp(X) = (X ∩
κ0n∗)

+ω·2+1, and T̂ ∩X is stationary in sup(X)}. Then E1 ∈ U∗.

The next lemma follows from the proof of Lemma 13 in [10].

Lemma 7.10. Let X ∈ E0 ∩E1 such that X ∩κ0n∗ ∈ A
p0
n∗ . Let B ≺ A witness that

X ∈ E0. Then there is (p∗0, p
∗
1) ∈ P∗ such that:

(1) (p∗0, p
∗
1) ≤ (p0, p1).

(2) `(p∗0) = n∗ + 1 and p∗1 is a trivial extension of p1.

(3) α
p∗0
n∗ = X ∩ κ0n∗ .

(4) If (p0, p
′
1) ∈ P∗ ∩ B and p′1 is a trivial extension of p1, then (p∗0, p

∗
1) ≤

(p0, q
′
1).

Let X,B, and (p∗0, p
∗
1) be as given in Lemma 7.10. For every γ ∈ T̂ ∩ X,

there is p1γ , a trivial extension of p1, and (ṡ′γ , q̇
′
γ) such that (p0, p

1
γ) forces that

(ṡ′γ , q̇
′
γ) ∈ G(Ṡ ∗ Q̇) and (p0, (p

1
γ , ṡ
′
γ , q̇
′
γ)) forces that γ ∈ Ṫ ∗. By elementarity of B,

such a p1γ exists in B, and hence, for all γ ∈ T̂ ∩X, (p∗0, (p
∗
1, ṡ
′
γ , q̇
′
γ)) 
 “γ ∈ Ṫ ∗”.

Since T̂ ∩X ∈ V C0
n∗+1×(C

1
0∗Ṡ∗Q̇) and has size less than κ0n∗ , we have {(ṡ′γ , q̇′γ) | γ ∈

T̂ ∩X} ∈ V .

In V C∗ , S ∗ Q̇ is κ0n∗ -directed closed. Thus, we can find names ṡ′ and q̇′ such

that, for all γ ∈ T̂ ∩X, (p∗0, (p
∗
1, ṡ
′, q̇′)) ≤ (p∗0, (p

∗
1, ṡ
′
γ , q̇
′
γ)). Thus, (p∗0, (p

∗
1, ṡ
′, q̇′)) 


“Ṫ ∩X ⊇ T̂ ∩X”. Since no cardinals between X ∩ κ0n∗ and (X ∩ κ0n∗)+ω·2+2 are

collapsed, an application of Claim 7.5 yields that T̂∩X remains stationary in sup(X)

after forcing over V C0
n∗+1×(C

1
0∗Ṡ∗Q̇) with P∗ below (p∗0, p

∗
1). Hence, T∩X is stationary

in sup(X) in V P0×(P1∗Ṡ∗Q̇) after forcing below (q0, (q1, ṡ
′, q̇′)), so (q0, (q1, ṡ

′, q̇′)) 
 “Ṫ
reflects.”
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Case 2: i = 1. Let n∗ = `(p1). Move to V C1
n∗+1∗Ṡ∗Q̇, requiring that the

C-part of p1 is in G(C1
n∗+1). Let P∗ be the set of (r0, r1) ∈ P0 × P1 such that

(r0, r1) ≤ (p0, p1) and the C-part of r1 is in G(C1
`(r1)+1). As before, forcing with

P∗ over V C1
n∗+1∗Ṡ∗Q̇ adds a V -generic filter for P0 × P1. Let T̂ be the set of α < λ1

such that, for some r1 such that r1 is a trivial extension of p1 and (p0, r1) ∈ P∗,
and for some (ṙ2, ṙ3) such that

(p0, r1) 
 “(ṙ2, ṙ3) ∈ G(Ṡ ∗ Q̇) and (ṙ2, ṙ3) ≤ (ṡ, q̇)”,

we have (p0, (r1, ṙ2, ṙ3)) 
 “α ∈ Ṫ ∗”. As in Case 1, T̂ is stationary in V C1
n∗+1∗Ṡ∗Q̇.

Lemma 7.11. T̂ is stationary in V C1
n∗+1∗Ṡ∗Q̇∗Ṫ.

Proof. Suppose not, and let D ∈ V C1
n∗+1∗Ṡ∗Q̇∗Ṫ be club in λ1 such that D ∩ T̂ = ∅.

Since V C1
n∗+1∗Ṡ∗Q̇∗Ṫ is a forcing extension of V C∗∗Ṡ∗Q̇∗Ṫ by a λ1-c.c. forcing, there is

a club D′ ⊆ D, D′ ∈ V C∗∗Ṡ∗Q̇∗Ṫ, such that 
C1
n∗+1

/G(C∗) “
˙̂
T ∩D′ = ∅”. In V C∗∗Ṡ∗Q̇,

let
ˆ̂
T = {α < λ1 | for some c ∈ C1

n∗+1/G(C∗), c 
 “α ∈ ˙̂
T”}

. Then, in V C∗∗Ṡ∗Q̇∗Ṫ, 
C1
n∗+1

/G(C∗) “
˙̂
T ⊆ ˆ̂

T”, and
ˆ̂
T ∩D′ = ∅. Thus,

ˆ̂
T is a subset

of Sλ1

≥λ0
that is non-stationary in V C∗∗Ṡ∗Q̇∗Ṫ and is thus already non-stationary in

V C∗∗Ṡ∗Q̇. But V C∗∗Ṡ∗Q̇ ⊆ V P0×(P1∗Ṡ∗Q̇) and, in V P0×(P1∗Ṡ∗Q̇),
ˆ̂
T ⊇ T , contradicting

the fact that T is stationary in V P0×(P1∗Ṡ∗Q̇). �

The rest of the proof is much as in Case 1. We provide some details for complete-

ness. In V C1
n∗+1∗Ṡ∗Q̇∗Ṫ, κ1n∗ is supercompact and λ1 = (κ1n∗)

+ω+1. Fix a fine, normal
measure U∗ on Pκ1

n∗
(λ1) such that U∗ projects to U1

n∗ . Let θ be a sufficiently large,

regular cardinal, and let A be an expansion of (H(θ),∈) by a well-ordering and
constants for all relevant sets. The next lemmas are as before.

Lemma 7.12. Let E0 = {X ∈ Pκ1
n∗

(λ1) | for some B ≺ A, we have X = B ∩ λ1,

|X| = |B|, and X ∈
⋂
A∈U∗∩BA}. Then E0 ∈ U∗.

Lemma 7.13. Let E1 = {X ∈ Pκ1
n∗

(λ1) | X ∩ κ0n∗ is inaccessible, otp(X) =

(X ∩ κ0n∗)+ω+1, and T̂ ∩X is stationary in sup(X)}. Then E1 ∈ U∗.

Lemma 7.14. Let X ∈ E0 ∩E1 such that X ∩κ1n∗ ∈ A
p1
n∗ . Let B ≺ A witness that

X ∈ E0. Then there is (p0, p
∗
1) ∈ P∗ such that:

(1) (p0, p
∗
1) ≤ (p0, p1).

(2) `(p∗1) = n∗ + 1.

(3) α
p∗1
n∗ = X ∩ κ0n∗ .

(4) If (p0, p
′
1) ∈ P∗ ∩ B and p′1 is a trivial extension of p1, then (p0, p

∗
1) ≤

(p0, p
′
1).

Let X,B, and (p0, p
∗
1) be as given in Lemma 7.14. As in Case 1, we get that, for

every γ ∈ T̂ ∩X, there is (ṡγ , q̇γ) such that (p0, p
∗
1) forces that (ṡγ , q̇γ) ∈ G(Ṡ ∗ Q̇)

and (p0, (p
∗
1, ṡγ , q̇γ)) forces that γ ∈ Ṫ ∗. Moreover, we may assume that, for every

such γ, there is ṫγ such that (p0, p
∗
1) forces (ṡγ , q̇γ , ṫγ) is in the dense λ1-directed

closed subset of Ṡ∗ Q̇∗ Ṫ and in G(Ṡ∗ Q̇∗ Ṫ). We can thus find names ṡ′ and q̇′ such

that, for all γ ∈ T̂ ∩X, (p0, (p
∗
1, ṡ
′, q̇′)) ≤ (p0, (p

∗
1, ṡγ , q̇γ)). Since, when forcing with
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P∗ below (p0, q1), no cardinals between X ∩ κ1n∗ and (X ∩ κ1n∗)+ω+1 are collapsed,

another application of Claim 7.5 yields that (p0, (q1, ṡ
′, q̇′)) forces that Ṫ reflects at

sup(X).

It remains to show that APκ1
ω

fails in V P0×(P1∗Ṡ∗Q̇). We will use an equivalent
alternative formulation of approachability, due to Shelah.

Definition 7.15. Suppose κ is a singular cardinal of countable cofinality, and let
d : [κ+]2 → ω.

(1) d is normal if, for all β < κ+ and all n < ω, |{α < β | d(α, β) ≤ n}| < κ.
(2) d is subadditive if, for all α < β < γ < κ+, d(α, γ) ≤ max(d(α, β), d(β, γ)).
(3) S0(d) is the set of γ < κ+ such that, for some unbounded sets A,B ⊆ γ,

for every β ∈ B, there is nβ < ω such that, for all α ∈ A∩ β, d(α, β) ≤ nβ .

Lemma 7.16. (Shelah) Suppose κ is a singular, strong limit cardinal of countable
cofinality.

(1) There is a normal, subadditive function d : [κ+]2 → ω.
(2) If d, d′ : [κ+]2 → ω are two normal, subadditive functions, then S0(d)4S0(d′)

is non-stationary.
(3) APκ is equivalent to the existence of a normal, subadditive d : [κ+]2 → ω

such that S0(d) contains a club.

In V , fix a normal, subadditive d : [λ1] → ω. Note that d remains normal

and subadditive in V P0×(P1∗Ṡ∗Q̇). Let (p0, (p1, ṡ, q̇)) ∈ P0 × (P1 ∗ Ṡ ∗ Q̇). Move to

V C1
`(p1)+1∗Ṡ∗Q̇∗Ṫ, requiring that, letting c be the C-part of p1, (c, ṡ, q̇) ∈ G(C1

`(p1)+1 ∗

Ṡ ∗ Q̇). κ1`(p1) remains supercompact in V C1
`(p1)+1∗Ṡ∗Q̇∗Ṫ, and a standard application

of supercompactness yields that, if A = {α < κ1`(p1) | S
λ1

α+ω+1 \ S0(d) is stationary},

then A ∈ U1
`(p). Note that, since this is true in V C1

`(p1)+1∗Ṡ∗Q̇∗Ṫ, it must be true in

V as well. Moreover, by previous arguments, for any club D in λ1 in V P0×(P1∗Ṡ∗Q̇),

there must be a club C ⊆ D in V C1
`(p1)+1∗Ṡ∗Q̇∗Ṫ.

Putting this together, working in V , there are U1
`(p1)

-many α < λ1 such that

(Sλ1

α+ω+1 \ S0(d))V is stationary in V P0×(P1∗Ṡ∗Q̇). Find α ∈ A ∩ Ap1`(p1), and find an

extension q1 ≤ p1 such that `(q1) = `(p1) + 1 and αq1`(p1) = α. It suffices to show

that, forcing below (p0, (q1, ṡ, q̇)),

(Sλ1

α+ω+1 \ S0(d))V
P0×(P1∗Ṡ∗Q̇)

= (Sλ1

α+ω+1 \ S0(d))V .

To this end, let β ∈ (Sλ1

α+ω+1 ∩ S0(d))V
P0×(P1∗Ṡ∗Q̇)

. Let A,B be unbounded in β

witnessing β ∈ S0(d). Since all cardinals in the interval (α, α+ω+2) are preserved by
the forcing, Claim 7.5 yields unbounded A′ ⊆ A and B′ ⊆ B such that A′, B′ ∈ V .
But then A′, B′ witness that β ∈ S0(d) in V . Thus,

(Sλ1

α+ω+1 \ S0(d))V
P0×(P1∗Ṡ∗Q̇)

= (Sλ1

α+ω+1 \ S0(d))V ,

so APκ1
ω

fails in V P0×(P1∗Ṡ∗Q̇). �

8. Questions

Many questions remain about the possible patterns of stationary reflection at
the successor of a singular cardinal. We ask only a few of them here.
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Question 8.1. Is it consistent that bRefl(ℵω2+1) and ¬APℵω2 hold simultaneously?

Question 8.2. Is it consistent that Refl(ℵω2+1) holds and, for every stationary
S ⊆ ℵω2+1, there is a stationary T ⊆ S that does not reflect at arbitrarily high
cofinalities?

Question 8.3. Is it consistent that Refl(ℵω·2+1) holds and there is a stationary

S ⊆ Sℵω·2+1
ω that does not reflect at any ordinal in S

ℵω·2+1

<ℵω ?
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