BOUNDED STATIONARY REFLECTION

JAMES CUMMINGS AND CHRIS LAMBIE-HANSON

ABSTRACT. We prove that, assuming large cardinals, it is consistent that there
are many singular cardinals p such that every stationary subset of 1 reflects
but there are stationary subsets of u+ that do not reflect at ordinals of arbi-
trarily high cofinality. This answers a question raised by Todd Eisworth.

1. INTRODUCTION

In this paper, we prove a consistency result about stationary reflection at succes-
sors of singular cardinals. Recall that, if k is a regular uncountable cardinal, S is a
stationary subset of k, and 8 < k is an ordinal of uncountable cofinality, then we say
that S reflects at 8 if SN G is stationary in 8. S reflects if it reflects at some ordinal
B < k, and Refl(k) holds if every stationary subset of x reflects. Our notation is for
the most part standard. [5] will serve as our primary reference for definitions and
notations. If A < k are cardinals, with A regular, then S§ = {a < & | cf(a) = A}
The class of ordinals is denoted by On.

The extent of stationary reflection is a topic of considerable interest in set theory,
particularly regarding the investigation of the tension existing between incompact-
ness phenomena and canonical inner models on one hand and large cardinals and
reflection principles on the other. Quoting two basic results in this vein, it is an easy
consequence of IT3-indescribability that, if  is weakly compact, then Refl(x) holds,
while Jensen [6] showed that, if V' = L and & is a regular, uncountable cardinal,
then Refl(k) holds if and only if x is weakly compact. Also note that, if k = AT
and A is a regular cardinal, then Refl(k) cannot hold, since S¥ is a non-reflecting
stationary subset of .

We will be concerned with stationary reflection at successors of singular cardi-
nals. The following fundamental result, due to Solovay [9] serves as a template for
many of the proofs in this area.

Proposition 1.1. Suppose (k; | i < w) is an increasing sequence of supercompact
cardinals, and let k,, = sup({r; | i <w}). Then Refl(x)) holds.

Proof. Let S C k} be stationary. By shrinking S if necessary, we may assume that

there is A < kK, such that S C S;‘t. Let " < w be such that A < k;«, and let
j : V. — M be an elementary embedding witnessing that ;- is ], supercompact.
In M, j(S) is a stationary subset of Sﬁ\(nz). Let n = sup(j“k}). n < j(kf), and
we claim that, in M, j(S) N is stationary in 7.

Suppose this is not the case, and let C' € M be a club in 5 such that CNj(S) = 0.
Since j“kJ is a < k;«-closed, unbounded subset of n, C' N j“k} is a < ky-closed,
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unbounded subset of n that is disjoint from j(S). Let D = j=1“(C' N j“k}). D
is a < k;«-closed, unbounded subset of xJ that is disjoint from S. But this is a

N
contradiction, since S is a stationary subset of Sf“ and \ < Kjx.

Thus, M = “j(S) reflects at ", so, by elementarity, there is 8 < k], such that
V = “S reflects at 57. O

Magidor, in [7], brings this result down to smaller cardinals by showing that,
assuming the existence of w-many supercompact cardinals, it is consistent that
Refl(N,,+1) holds. In [8], Shelah produces, starting from a proper class of super-
compact cardinals, a model in which, among other things, Refl(z™) holds for every
singular cardinal pu. In fact, he shows that, under more stringent large cardinal
assumptions, such a model can contain a cardinal x which is x1T"-supercompact
for every n < w. On the other hand, he proves in the same paper that if there is
a cardinal k that is xT“*!-supercompact, then there is a singular cardinal p such
that Refl(u™) fails. In [1], Chayut presents a simpler argument that one can force
stationary reflection at the successor of every singular cardinal.

In this paper, we investigate questions about the cofinality of ordinals at which
stationary sets reflect. These questions are of interest in, for example, the study
of square bracket partition relations, where Eisworth has shown [4] that, if p is
a singular cardinal and pt — [/ﬁ‘]i+7 then, for every stationary set S C pt and

every regular A < p, there is 5 € S‘;:\ such that S reflects at 5. Eisworth [2] raised
the natural question as to whether this is always the case assuming Refl(u™) holds.
With this in mind, we make the following definition.

Definition Let p be a singular cardinal. Bounded stationary reflection holds at
puT if Refl(u™) holds but there is a stationary S C p* and a A < p such that S

+
does not reflect at any ordinal in S%,.

An easy argument shows that bounded stationary reflection cannot hold at R, 1.

Proposition 1.2. Suppose Refl(N,,4+1) holds. Then, for every n < w, every sta-
tionary subset of W,y reflects to an ordinal B such that c¢f(5) > N,,.

Proof. For a stationary T' C N,,11, let T/ = {8 < V41 | T reflects at §}. It is
immediate that, for every stationary T'C R, 1, T” is stationary. For, if not, let C
be club in X, 11 such that CNT" = ). Then C NT is a stationary subset of N, ;1
that does not reflect, contradicting our hypotheses.

Now let S C N, ;1 be stationary and let n < w. We will show that S reflects at an
ordinal of cofinality at least X,,. Define sequences (Sj | k¥ < w) and (i) | k < w) as
follows. Find iy < w such that SN cof(X;,) is stationary, and let Sp = S Ncof(R;,).
Given Sy and iy, find ipyy < w such that Sj N cof(X;,,,) is stationary, and let
Sk41 = S Ncof(R;, ). Each Sy is a stationary subset of 8,1 Ncof(X;, ) and, since
such a set can only reflect at ordinals of cofinality greater than N;, , it follows that
(i | k < w) is a strictly increasing sequence.

Claim 1.3. For every k < w and f < N,41, if Sk reflects at B, then S reflects at
8.

Proof. We proceed by induction on k. k = 0 is trivial, since Sy C S. Now suppose
we have proven the claim for k£ and that Sjy1 reflects at 3. Let C be club in 3, and
let & € C"' N Sky1. Then Sy reflects at «, so, since C N« is club in a, C N Sy # 0.
Thus, Sy reflects at § and, by induction, S does as well. O
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Now find 7 < w such that i;, > n. Then Sy reflects at an ordinal 3, and, by our
choice of k, cf(8) > R,,. By the claim, S also reflects at 8, and we are done. d

In this paper, we show that the situation is different at larger cardinals. Start-
ing from sufficiently many supercompact cardinals, we produce a model in which
bounded stationary reflection holds at many singular cardinals.

2. PRELIMINARIES ON APPROACHABILITY AND FORCING

We recall some definitions related to approachability and the ideal I[\]. These
notions were introduced by Shelah.

Definition Let p be a singular cardinal, and let A = pt.

(1) Let @ = (aq | @ < A) be a sequence of bounded subsets of A\. A limit ordinal
B < X is approachable with respect to @ if there is an unbounded A C f3
of order type cf(8) such that, for every v < 8, there is a < 8 such that
ANy =aq.

(2) Let S C A. S € I[)\] if there is a sequence @ = (aq | @ < A) of bounded
subsets of A and a club C' C A such that every 5 € C'N S is approachable
with respect to da.

(3) We say that the approachability property holds at p (written AP,) if X €
I[N

I[A] turns out to be a normal ideal on A, and so AP, is the same as the statement
that I[)\] is an improper ideal. Also, if kK < p is a regular cardinal, then I[}]
always contains a stationary subset of S}. If A<* = X\ then, letting @ and b be
two enumerations of the bounded subsets of A in order type A, the set {3 | {aq |
a < B} = {by | @ < B}} is easily seen to be a club in A. Thus, the set of
ordinals approachable with respect to @ is equal, modulo clubs, to the set of ordinals
approachable with respect to b. In this case, if we fix an enumeration d of the
bounded subsets of A in order type A, then the set S of ordinals approachable with
respect to @ is a maximal set in I[)] in the sense that that if T C A, then T € I[}]
if and only if 7'\ S is nonstationary. If such a maximal set exists, it is referred to
as the set of approachable points of A. See [3] for proofs of these facts and other
information on I[A].

For our forcing constructions, we will need the following definitions.

Definition Let P be a partial order, and let X C P. A lower bound for X is a
condition g € P such that, for all p € X, ¢ < p. If there is a unique condition r € P
such that r is a lower bound for X and, if ¢ is a lower bound for X, then ¢ < r, then
this condition r is denoted by inf(X). If there is no such condition, then inf(X) is
undefined.

Definition Let P be a partial order and let 8 be an ordinal.

(1) The two-player game Gg(PP) is defined as follows: Players I and II alter-
nately play entries in (p, | @ < B), a decreasing sequence of conditions in
P with py = 1p. Player I plays at odd stages, and Player II plays at even
stages (including all limit stages). If there is an even stage o < 8 at which
Player II cannot play, then Player I wins. Otherwise, Player II wins.

(2) G3(P) is defined just as Gg(P) except Player II no longer plays at limit
stages. Instead, if & < 3 is a limit ordinal, then p, = inf({p, | v < a}) if
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such a condition exists. If, for some limit o < 3, such a condition does not
exist, then Player I wins. Otherwise, Player II wins.

(3) P is said to be S-strategically closed if Player II has a winning strategy for
the game Gg(P). P is said to be strongly B-strategically closed if Player 1T
has a winning strategy for the game G (P). The notions of < S-strategically
closed and strongly < [-strategically closed are defined in the obvious way.

The following facts will be crucial for us.

Fact 2.1. Let P be a partial order and let k be a cardinal. IfP is (k+1)-strategically
closed, then forcing with P does not add any new k-sequences of ordinals.

Fact 2.2. [7] Let k be a regular cardinal, and let Kk < A\ < p. Suppose that,
in V<N P s o separative, strongly k-strategically closed partial order and
|P| < w. Let i be the natural complete embedding of Coll(k, < X) into Coll(k, < )
(namely, the identity embedding). Then i can be extended to a complete embed-
ding j of Coll(k,< A) * P into Coll(k, < u) so that the quotient forcing Coll(k, <
1)/ j[Coll(k, < A) * P] is k-closed.

Fact 2.3. Let k be a reqular cardinal and let <]P’Z-7Qj | 7 < a,i < a) be a forcing
iteration in which inverse limits are taken at all limit stages of cofinality < k and
such that, for all i < o, IFp, “Qy is (strongly) k-strategically closed’. Then P, is
(strongly) k-strategically closed.

We now define a forcing notion to shoot a club through the set of approachable
points of the successor of a singular cardinal. This forcing poset is a key component
of Chayut’s proof of the consistency of stationary reflection in [1], and we will use
it in a similar way here. Suppose pu is singular, A = p, and A<* = \. Let @ be
an enumeration of the bounded subsets of A in order type A, and let S be the set
of ordinals that are approachable with respect to a. Define Qz to the be the poset
consisting of closed, bounded subsets of S, where, if p,q € Qz, then p < ¢ if and
only if p is an end-extension of q.

Lemma 2.4. Qg is strongly < A-strategically closed.

Proof. Let B < A. We describe a winning strategy for Player II in GE(Q&). Fix a
large, regular cardinal #. In the course of the game, as the plays (¢, | o < ) are
made, we will be defining a continuous, internally-approachable chain (M, | a < )
of elementary submodels of H(6) subject to the following conditions:

e Qz € My, B C My, and, for every limit o < 3, there is a club C, C « of

order type cf(«) such that C,, € M.

e Forall a < 8, |My| < Aand M, NA €A

e Foralla < f, (gy | v < a) € Maya.
If o is an even successor ordinal and (¢, | v < a) has been played, then Player II
plays a g, such that

® g, € M,.

® (a S qo—1-

e max(qy) > My—1 N A
This is possible, since S is stationary in A and M, contains all relevant information
needed to find such a q,.

Now suppose that a@ < f is a limit ordinal and that (¢, | v < «) has been

played. We show that (. ., ¢y U{(Ma N A)} is a valid condition, thus completing
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the proof. It suffices to show that M, N A is approachable with respect to @. To
this end, consider D = {M, N A |~y € Cy}. D is aclub in M, N X of order type
cf(a) = cf (M, N A). Also, every initial segment of D is in M,, since every initial
segment can be calculated from C\, and a sufficient initial segment of (M, | v < ),
which are in M,. But M, | “d is an enumeration of the bounded subsets of \”,
so, for every n < M, N A, there is £ < M, N A such that D N = a¢. Thus, D
witnesses that M, N A is approachable with respect to d. (I

We now introduce a forcing notion to add a particular type of stationary set to
the successor of a singular cardinal. Let u > X, be a singular cardinal, let A = p™,
and let x < p be a regular uncountable cardinal. S, , is a forcing poset whose
conditions are of the form p = (sP,7?), where s” is a bounded subset of S such
that, for all 8 € Sé,{, sP N B is not stationary in 8 and v < A is such that s? C ~P.
If p,q € Sxx, then p < ¢ if and only if v» > 49 and s? N9 = s%. It is immediate
that forcing with Sy, adds a stationary subset of S} that does not reflect at any
RS SQK and that Sy , is k-closed. We will be interested mostly in forcings of the

form S_)\,NquU which we will denote simply as Sj.

Lemma 2.5. S, ,; is < A-strategically closed.

Proof. Let § < XA. We describe a winning strategy for Player II in Gg(Sy ). In
the course of the game, as the conditions (p, | @ < ) are being played, we define
closed, bounded subsets (Cy, | @ < 8 is even) of A, ensuring that

e For all even a < o < 3, Cy end-extends Cl,.

e For all even o < 8 and all v < o, C, N sP7 = .

e For all even o < 8, 7P« = max(C,) + 1.
Suppose that o < /8 is an even successor ordinal and (p, | v < «) has been played.
Player II finds 7, > 4P=-1, lets C, = Cq—2 U {14}, and plays p, = (sP>=1 1, + 1).
If « < fis a limit ordinal, let n, = sup({max(C,) | v < «a}). Player II lets

COé = U’Y<Oz C"/ U {ﬁa} and plays Pa = (U’y<o¢ Spw777a + 1) Pa € S)\,nv since
U,Y<a C, witnesses that s, N1, is not stationary in 7. O

Remark Note that the proof of Lemma 2.5 does not yield the stronger conclusion
that Sy , is strongly < A-strategically closed. The reason is that, at limit stages a,
it was necessary to take v~ to be 7, + 1 instead of 7,, which would have been the
value were we obliged to take a greatest lower bound of the conditions played thus
far. It is important for the proof that 7, be excluded from the generic stationary
set. The fact that Sy . is not strongly < A-strategically closed is one of the major
obstacles that will need to be overcome in the proof of the main theorem. We do,
however, get a certain amount of strong strategic closure.

Lemma 2.6. S ,; is strongly < k-strategically closed.

Proof. Since Sy , is k-closed, it suffices to show that, if 5 < k and (p, | @ < ) is a
decreasing sequence of conditions from S) ., then (p, | @ < B) has a greatest lower
bound. Define ¢ = (s9,79) by letting s = J,, 5 87 and v? = sup({y" | a < B}).
Then ¢ is easily seen to be the greatest lower bound of (p, | o < ). O

We recall one more important fact, due to Shelah, before we state our theorem.

Fact 2.7. Let p and k be cardinals. Suppose that AP, holds, S is a stationary

subset of Szz, and P is a p-closed forcing poset. Then S remains stationary in VF.
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3. THE MAIN THEOREM

Theorem 3.1. Suppose there is a proper class of supercompact cardinals and GCH
holds. Then there is a forcing extension in which, for every singular cardinal pp > N,
that is not a cardinal fized point, every stationary subset of u reflects but there is

n
a stationary S C Sjuﬁ such that S does not reflect at any ordinal 5 € ngﬂ'

Proof. Let (k; | i € On) be an increasing, continuous sequence of cardinals such
that
® Ky =w.
o If k; is singular, then x;1 = H;r.
e If k; is regular, then ;41 is supercompact.
We may assume without loss of generality that, if ¢ is a limit ordinal, then &; is
singular, for, if this is not the case, then we may work not in V' but in V.., where
7* is the least limit ordinal ¢ for which &; is regular.
We now define a class forcing (P; | ¢ € On) such that:
e If 7 is a limit ordinal, then P; is the inverse (i.e. full support) limit of
(P | j <i).
e If i is a successor ordinal, then P; 11 = P; % Coll(k;, < Kiy1).
e If i > w is a limit ordinal and ¢ < k;, then let @ be a P;-name for an
enumeration of the bounded subsets of x;y1 in order type k;41 and let
Piy1 =P % Qa * S,{ 41+ For technical reasons, we assume that, for every
J < i, there is a set Aé C K;y1 in the ground model such that it is forced

to be the case that all bounded subsets of x; 1 in VPi are enumerated in @
by indices in the set A; in a way that is defined in V%5,
e If i is a limit ordinal and ¢ = ;, then P;11 = P; % {1}, where {1} is trivial

forcing.
For ordinals ¢ < k, let sz be such that P, = P; ]P’Zk We think of conditions in P;
as being functions p with domain ¢. If £ <1 is a limit ordinal, Py ¢4 is of the form
Q& *SHHN and p € P;, then p(¢) is thought of as a pair (p(£)o, p(£)1) in the natural
way. Note that, by Lemmas 2.4 and 2.5 and Fact 2.3, for all ordinals i < k, in V' we
have that ]P’Z k Is < k;-strategically closed and hence does not add any new sequences
of ordinals of length less than k;. Thus, for ¢ < k, (H(m))vwk = (H(m))vwi, SO
VE =U;con V' is a model of ZFC.

We now show, by induction on ordinals 4, that all of the x;’s remain cardinals
in VP. It is clear that there can be no other cardinals in V¥ and so, when we
have shown this, it will follow that x; = (Ni)vw. ko = w, so there is nothing to
worry about here. We first consider cardinals x;y1, where 7 is a successor ordinal
or 0. In this case, since |P;| < ki1, Kip1 remains supercompact in VFi. Since
P;1 = P xColl(ki, < Kit1), kir1 = (5;7)F+1. Finally, since for all k > i+ 1, ;41
is < Kjy1-strategically closed, x;41 remains a cardinal in VP for all k and hence in
VE

If 4 is a limit ordinal, then, by the previous paragraph, x; is, in V¥, the limit of
cardinals and hence a cardinal. Finally, consider x;;1, where ¢ is a limit ordinal.
Since, for all k > i+ 1, P41 is < ki 1-strategically closed, it suffices to show that
Ki+1 remains a cardinal in VFi+1, Suppose this is not the case. Then there is ig < i

such that (cf(/<ai+1))vpHl = Kj,. Since P 41,541 18 K4, + 1-strategically closed, it
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must be the case that ((3f(/-@¢_~_1))v%+1 = Kip- But |Piy41] < Ki, SO K41 remains
a regular cardinal in V%i+1, This is a contradiction, so in fact k;,; remains a
cardinal in VFi+1,

It remains to show that, in VT, for every limit ordinal i > w that is not a
cardinal fixed point, every stationary subset of x;1 reflects but there is a stationary
S; C S5 that does not reflect at any ordinal in Si’gjﬂ. We prove the latter
statement first, since it is almost immediate. Let i > w be such an ordinal, and let
S; be the stationary set added by S, ,. By the definition of S,,_,, in VPt g
is a stationary subset of S;,'"" that does not reflect at any ordinal in Si’g:ﬂ. The
fact that S; does not reflect at any such ordinal is clearly preserved in any further
forcing extension. Also, since AP, holds in VFi+1 and, for all j > i+ 1, P;yq ; is
countably closed, S; remains stationary in every Vi and hence in VF. Thus, S; is
as desired.

The following lemma, which will be useful in proving that all stationary subsets
of k41 reflect, comes from [1]. We thank Menachem Magidor and Yair Chayut for
communicating it to us.

Lemma 3.2. Let i € On, and let X; be the set of limit ordinals k < i such that

w < k < kg. Then the set D; of p € P; such that there is a function g € H Kk+1

keX;
such that g € V and, for all k € X;, p | k IFp, “max(p(k)o) < g(k)” and p |
k™ p(k)o IFpsg, “YPHF) < g(k)” is dense in P;.

Proof. We actually prove the following stronger statement: Let ¢y < i be ordinals,
let X, ; be the set of limit ordinals k € [ig,4) such that w < k < kg, and work in

VPio, Let D;, ; be the set of p € IP;, ; such that there is a function g € H Kk+1

k€Xig,i
such that g € VFio and, for all k € X;, 4, p | [io, k) ke, “max(p(k)o) < g(k)” and
p [ lio, k)" p(k)o IFp,, xqs “YP*1 < g(k)”. Then Dj, ; is dense in P;, ;.

We proceed by induction on i¢. Thus, fix ordinals 79 < i. First, suppose i =
k+ 1. If k is a successor ordinal or k is limit and k& = ki, then the conclusion is
trivial, since k € X, ; in this case. Thus, assume k is a limit ordinal and & < k.
Work in V¥ and let p € P;, ;. Find p’ < p | [io, k) " p(k)o and < k;41 such
that p' IFp, 0, “ypEli < 9 Find p” < p' | [ig,k) and & < k;q1 such that
p" ke, “max(p'(k)o) < &”. Finally, by the inductive hypothesis, find p* < p”

such that p* € D;,  as witnessed by h € H ket1. Form p € Py, ; by letting
Xk
p=p*"p'(k)o"p(k)1, and define g € H Ket1 by letting g(¢) = h(£) for ¢ < k and
LeX;
g(k) = max({n,£}). Now p < p, and p € D, ;, as witnessed by g.

Now suppose i is a limit ordinal, work in VP, and let p € P;,.i- Recall that x;
is singular and that cf(k;) = cf(i). Let (£y | @ < cf(7)) be increasing and cofinal in
i, with £y > ip a successor ordinal and ry, > cf(i). Move to VF%, assuming that
p | [t0, 4o) is in the generic subset of P;, 4,. Note that Py, ; is cf(¢) 4 1-strategically
closed. We will play the first cf(i)-many moves of the game Gef(y11(Py,,i) to
produce (p, | @ < cf(i)). Player II will play her winning strategy, and Player
I will play p | [€o,%) on her first move and, on her a'" move, will play ¢ such
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that ¢ | [€o,la) € Dy, as witnessed by h, € H K+l (Pa | @ < cf(4))
kEXeg, 00
has a lower bound p*, and, moreover, we may assume that, for each k € X, ;,
p* | [lo, k) IFp,, . “p* (K)o is the greatest lower bound of (pa(k)o | o < cf(i))” and
p* I [lo, k)" p* (K)o IFe,, wxq; “P"(K)1 is the greatest lower bound of (pa (k)1 | @ <
cf(i))”. Thus, defining h* € H K41 by h*(k) = sup({ha(k) | o < cf(i)}), we
keXyy,i
can assure that p* € Dy, ; as witnessed by h*.

Now move back to Vi, let p* be a Py, 4,-name for p*, and let 7* be a P;, 4,-name
for h*. Since P;, ¢, satisfies the KZJ-C.C., we can find h € VP such that P, 00 “hr <
h?. Thus, thereis ¢ < p | [ig, £o) such that ¢ IFp, 0, “P* € Dy, as witnessed by h”.
Find ¢ < qgand b/ € H Kk+1 such that ¢’ € Dy, as witnessed by h'. Finally,

kex

i0,0
let p € P;y; be such that p [ [io, ) = ¢’ and ¢’ IFp, , “P | [lo,7) = p*”, and let
g=h"h. Then p < p and p € D,, ;, as witnessed by g¢. [

Fix a limit ordinal 4 > w such that 4 is not a cardinal fixed point in VF. We
will show that every stationary subset of k;11 reflects. Since every subset of x; 1
in V¥ appears in VFi+2 it suffices to prove stationary reflection in VFi+2. Let G be
P;o-generic over V. For ip < i+ 2, let G, be the P; -generic filter induced by G.
Let T' C k;41 be stationary in V[G]. Without loss of generality, there is a successor
ordinal k < i such that T C S;i*". We will show that T reflects. The proof breaks
into two cases.

Case 1: k <w.

Let k* < w be such that k£ < k*, and let i* = k* + 1. In V[Gg«], ki is
supercompact. Let j : V[Gg+] — M[Gg~] witness that k;« is k;12-supercompact.
J(Pi= i+) = Coll(kg=, < j(ki=)) and Py ;1o is strongly kp--strategically closed, so,
by Fact 2.2, j(Pg= =) = P« ito * R, where R is sg«-closed. Thus, letting H be
R-generic over V[G], we can extend j to j : V[Gi<] = M[G = H|

We would like to extend j further to have domain V[G]. Let G* be the P« ;o-
generic filter over V[G;+] induced by G. We recursively build a condition p* €
J(Pix iy2) such that p* < j(p) for all p € G'". Conditions in P;« ;12 can be seen
as functions with domain [i*,¢ + 2), so conditions in j(P;« ;+2) can be thought
of as functions with domain [i*,j(i + 2)). We recursively define p*(«) for a €
[i*,7(i + 2)). Suppose « is a successor ordinal and we have defined p* | [i*, @)
such that p* | [i*,«) < j(p) | [*, ) for all p € G. The forcing at coordinate «
in j(P;« ;42) is a Levy collapse that is j(k;-)-directed closed, and, in M[G * H],
|G¥"| = kg, so there is ¢ such that p* | [i*,a) IF “¢ < j(p)(a)” for every p € G .
Let p* Ja+1=p" [a"yg.

Now suppose « is a limit ordinal. We would like to thank Menachem Magidor
and Yair Chayut for conveying the following argument. By Lemma 3.2, Ijp,.)

“sup({j(p)(a)o | p € G }) =sup({j(9)() | g € H Ke+1 NV})”. Let this common
<i

supremum be denoted by 7, and note that cf¥ (7) < kip1. We would like to let

p*(a)o be forced by p* | a to be equal to U J)(@)oU{y}. Let A= {dp| ¢ €

peG”
X~ i+2) be a sequence of names such that, for every ¢ € X« ;40, IFp, “dy is the
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enumeration of bounded subsets of kyy1 to be used in the forcing to shoot a club
through the set of approachable points of x¢41.” We must show that v is forced to
be approachable with respect to j(A)(«).

Let I, be j(Pi+ i+2)ix o-generic over V[G * H| with p* [ o € I,. Note that the
following facts hold.

(1) Since Py~ satisfies the s}.-c.c., if g € HngH N V[Gg~], then there is h €
0<i
[ 5e1 NV such that, for all i* < € <, g(£) < h(¢).
0<i

(2) V|G = H % 1,] is an extension of V[Gy«] by kp~-distributive forcing.

(3) M[GxH]is an extension of M [Gy+] by Coll(kg+, < j(k;). Thus, any ordinal
in the interval [k, Ki+2] which is a regular cardinal in V is an ordinal of
cardinality and cofinality kg« in M[G * H]|. Since I, is generic for forcing
that is j(k;~)-distributive in M[G x H], this remains true in M[G % H % I,].

We can therefore, in V[G * H * I,], find a sequence (gs | 6 < kg+) of elements of
H Ke¢+1 NV such that:
e<i

e Forall n < § < k= and i* < £ <4, g,(£) < g5(£).
e For every g € HWH, there is § < kg« such that, for every i* < £ < i,
0<i
g(0) < g5(0).

Notice that, due to the fact (2) listed above, (g5 | 6 < n) € V[Gg~] for every
1 < Kp+. Also, because of our technical assumption on the names d; stated at the
beginning of this proof, for every n < ki« and every £ € X;« ;19, the index at which
{gs(£) | § < n} is enumerated in @, can be computed in V[Gg+]. Thus, fact (1)
listed above, there is h,, € H ket1 NV such that, for every £ € X« ; 40, the

LeXix ito
set {g5(¢) | § < n} is enumerated in &, with an index smaller than h, (¢). It follows
that the set {j(gs)(«) | § < n} is enumerated in j(A)(«) with an index smaller than
jlh)(a) <7,

By the closure properties of M, (j(gs)(a) | 6 < ki) € M|G * H], and, by
the previous paragraph, this sequence is easily seen to witness the approachability
of v with respect to j(A)(a), so our definition of p*(a)g is valid. Finally, we
define p* ()1 by noting that the second component of coordinate o in j(IP;« ;42) is
J(Kwt1) > Kipo-directed closed, so we can define p*(«); to be a name for a lower
bound for {j(p)(a); | p € G*'}.

We now have successfully completed the construction of p*. Let I be j(Ps ;12)-
generic over V|G * H| such that p* € I, and extend j to j : V]G] = M[G x H * I|.

Now suppose, for sake of contradiction, that T' does not reflect in V[G]. Then,
in M[G * H * I], j(T) is a stationary subset of Siiﬁ”l) that does not reflect. In
particular, letting n = sup(j“k;11), 7(T) does not reflect at n. Let D be a club in
7 disjoint from j(7"). Since j“k;11 is < Ki=-closed and unbounded in 7, DN j“k;41
is < kj«-closed and unbounded in 7 and is disjoint from j(7T"). Thus, E = j~1“(DnN
J“Kir1) 18 a < Kj=-closed, unbounded subset of x;11 that is disjoint from T. E €
V|G x H * I]. However, as I is generic for j(x;«)-strategically closed forcing and
j(Kkix) > Kiy1, it must be the case that E € V[G * H|. Thus, since ki < k;+ and
T C Siit', E witnesses that T is not stationary in V[G * H]. However, since T is
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stationary in V[G], AP, holds in V[G], and H is generic for kj«-closed forcing,
Fact 2.7 implies that T remains stationary in V|G x H]. This is a contradiction, so
T does reflect in V[G].

Case 2: k > w. Let k* be a successor ordinal such that k < k* <7 and i < kg~
(note that we can do this because i < k;), and let i* = k* + 1. Let X be the set
of limit ordinals ¢ € (i*,¢] such that £ < ky. In V[G], for £ € X, let S; be the
stationary subset of S5*' added by S,,,,. We would like to repeat the argument
for Case 1, but now P;« ;15 is no longer strongly r--strategically closed, and the
stationary sets Sy present a concrete obstacle to lifting the relevant elementary
embedding. Thus, we force to destroy the stationarity of the sets S, for ¢ € X.
To this end, let T be the forcing poset whose conditions are functions ¢ such that
dom(t) = X and, for all £ € X, t(¢) is a closed, bounded subset of ks11 such that
t()NSe=0. If s,t € T, then s < ¢ if and only if, for every £ € X, s(¢) end-extends
t(¢). Let K be T-generic over V[G]. The main reason for introducing T is that
it allows us to construct long decreasing sequences of conditions from P;- ;4o that
have lower bounds. This is made more precise in the following claim.

Claim 3.3. In V[G;-], there is a dense subset of P+ ;10 % T that is strongly ry«-
strategically closed.

Proof. Let U be the set of (p,i) € P;« ;42 * T such that there is g € H Koyl

leXx
such that, for all £ € X, p [ £7p(0)o rp,. xq; “9PD1 = g(€) + 17 and p IFp,.
“max(i(6)) = g(e)" |

We first show that U is dense in P+ ;10 * T. Given (po,to) € Pi» 42 * T, find

p1 < po such that there is hg € HWH such that, for every £ € X, p; IFp
0<i
“max(fo(£)) < ho(£)”. Then, find ps < p; such that, as in Lemma 3.2, py € Dj» ;19,
as witnessed by hy € H Ket1, where hy > hg. Now let (p,f) < (p2,1o) be such that,
0<i
forall ¢ € X, p [ €7 p(0)o IFp, yugs “YPOr = hi(€)+1" and plFp,. .., “max(i(f)) =
h(¢)”. Then (p,t) € U and (p,£) < (po,fo), so U is dense in P;« ;41 * T.

We now show that U is strongly j--strategically closed. We thus describe a
winning strategy for Player IT in the game G}, , (U). Suppose that 8 < k- is an
even successor ordinal and ((pa,%s) | @ < B) has been played. All of the forcing
iterands in P;~ ;4o are already known to be strongly kj--strategically closed except
for those of the form S,,,, so, on all of the other coordinates, Player II plays at
stage 8 according to her winning strategy. To finish, at all £ € X, she simply lets
ps(0)1 = ps—1(¢)1 and lets 53 = t5_1. This is easily seen to describe a condition in
U extending (ps—1,t5-1). If B < kg« is a limit ordinal and ((pa,ta) | @ < B) has
been played, we need to exhibit a greatest lower bound, (pg, fﬁ), for this sequence
of conditions. We define pg(¢) recursively for £ € [i*,i + 2). Let pg(¢) (or ps(£)o,
if £ € X) be such that ps | ¢ forces that pg(¢) is the greatest lower bound of
(pa(f) | & < B). Such a greatest lower bound exists because Player II has been
playing according to her winning strategy on coordinate ¢. For ¢ € X, we have
two cases for pg(£);. If (77«1 | @ < B) is eventually equal to some ordinal 7 + 1,
then let pg(¢)1 be forced by pg [ £7pg(£)o to be equal to (U, sPa(®1 4 1), If
(yP«O1 | o < B) is not eventually constant, let n = sup({y?>)1 | a < B}) and
again let pg(€)1 be forced by pg [ £ pa(£)o to be equal to (Ua<5 sPe(O1 1), The

i+2

i*i42
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key point here is that, for each £ € X, we have ensured that {max(s(¢)) | « < 8}

is a club in n and witnesses that J,. 5 sP=(O1 is not stationary in 7. Finally,

let {5 be such that, for all £ € X, letting n be as in the definition of ps(f)1,

pg P, 0y “tg(0) = U to(€) U {n}". Tt is easily seen that (pg,ig) € U and is a
a<lf

greatest lower bound of ((ps,ts) | @ < B). O

As in Case 1, k;~ is still supercompact in V[Gg+], so let j : V[Gp«] = M[Gj+]
witness that ;- is k;4p-supercompact. Since P;» ;12 * T has a dense, strongly rp«-
strategically closed subset, we can use Fact 2.2 to lift j to j : V[G] = M[GxK«H],
where H is generic over V|G * K] for kp«-closed forcing. We now define a master
condition p* € j(IP;- ;19) such that p* < j(p) for every p € G* . This is done exactly
as in Case 1 except for the following: if £ € X, let np = j“kg41. Then p*(£); is
defined so that it is forced by p* [ £7p*(£)o to be equal to (U, g sP(O1 n+1). Note
that it is forced that sup(s?” (Y1) = n, and p*(€)1 € §(Sk,,, ), since U, 5(£)(£) is
forced to be a club in 7 disjoint from s?" (D1, Also, since i < crit(j), elements of
J(Pi« it2) can also be thought of as functions with domain [i*, 74 2), so this finishes
the definition of p*.

Thus, letting I be j(P;« ;42)-generic over V[G* K« H| with p* € I, we can lift our
embedding to j : V[G] — M[G * K * H = I|. If T does not reflect in V[G], then, as
before, we can find a club F in k;41 such that £ € V[G* K| and ENT = (. Thus,
we will reach a contradiction and finish the proof if we demonstrate the following
claim.

Claim 3.4. T remains stationary in V|G * K].

Proof. Work in V[G]. Let to € T, and let D be a T-name for a club in ;4. We will
find ¢ < to such that t I “DNT # (7. Let 6 be a sufficiently large regular cardinal.
Since AP, holds (it was forced by P; ;11), we can find an internally approachable
continuous chain of elementary substructures of H(6), (M¢ | £ < ki) such that:
T, {ke | £ < i+ 1},t0, D € M.
KZZ_ C Mo.
For all £ < kg, |M¢| < K+
Letting M = {J¢_,, M, sup(M Nkiy1) €T
For all £ € X, let Ay = sup(M Nkyq1). For each £ € X, cf(\;) = ki and (sup(Me N
Ket1) | € < ki) enumerates a club CP in A, all of whose initial segments are in M.
In fact, since n;* C M every bounded subset of Cf is in M. Also, for all £ € X, since
k > w, Sy does not reflect at Ay, so there is a club Cel in Ay such that C'é1 NS, =0.
For all £ € X, let C, = Cy N C}. By the preceding, we have that Cy is a club in
keq1 disjoint from Sy, all of whose initial segments are in M. In fact, again since
Kk C M, any sequence (C} | £ € X) such that each C} is an initial segment of C
is in M. For each £ € X, let (n’ | @ < k%) be an increasing enumeration of C.
We now construct a descending sequence (¢, | a < ki) of conditions in T N M.
In fact, any initial segment of the construction can be computed inside M, so any
initial segment of the sequence of conditions will also be in M.
to has already been given. Suppose t, € M is given. We will construct ty1.
First, let ¢/, be the <p-least condition in T such that ¢/, < t, and there is v > n’,
such that ¢/, Ik “y € D”. Then, let t,41 be the <p-least condition such that
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ta+1 < t., and, for every £ € X, there is 8 > « such that max(t44+1(¢)) = Ufa~ Note
that the calculation of t,; only requires sufficiently long initial segments of the
clubs Cy, so ta41 € M.

If 8 < Ky is a limit ordinal and (¢, | @ < ) has been constructed, then, for each
te X, let §p = sup(U,<pta(f)) and define tg by letting t5(¢) = U, ta(€) U{dc}.
ts is a valid condition in T since, for each £ € X, 0, is in C; and hence not in S;.
Also, the calculation of tg only requires (t, | a < ), calculation of which itself
only requires sufficiently long initial segments of the C/’s, so tg € M.

Finally, define ¢ € T by, for each ¢ € X, letting t(¢) =, ta(f) U{A\¢}. Each
A¢ has cofinality ki > w, so Ay € Sy and thus ¢ is in fact in T. Also, t < t,, for all
a < Kg, so t kg “5\1- S D”, so, in particular, t I “DNT 0. [l

It remains open whether we can find a model in which bounded stationary re-
flection holds at the successor of every singular cardinal greater R,. The difficulty
in dealing with successors of cardinal fixed points lies in the fact that, if we are
unable to use an elementary embedding with critical point in the interval (i, s;),
then our proof of Claim 3.4 does not work. By suitably varying the cofinalities of
the points at which the stationary sets Sy are allowed to reflect, we can obtain a
model in which bounded stationary reflection holds at the successors of all singular
cardinals greater than N, which are not limits of cardinal fixed points, but it seems
that this approach cannot be extended to attain a truly global result.
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