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Abstract. We give an application of a higher-dimensional ∆-system lemma

by using it in a slight modification of the proof of a recent result of Zhang
about additive partition relations on the reals. This is meant to illustrate the

use of the ∆-system lemma in question, and gives a slight improvement to the

local version of Zhang’s result.

The purpose of this note, which is not intended for publication, is to pro-
vide an exposition of a proof of a recent result of Zhang [4] in which a certain
higher-dimensional ∆-system lemma used in [4] is replaced by a different higher-
dimensional ∆-system lemma proven in [3]. Both lemmas involve starting with a
sequence ⟨ua | a ∈ [µ]n⟩ of sets of ordinals indexed by n-tuples from some cardinal
µ, and then finding a set H ⊆ µ of some specified size such that ⟨ua | a ∈ [H]n⟩
satisfies certain uniformities. The advantage of our lemma in [3] is that, at least in
the context of accessible cardinals, weaker assumptions are placed on the size of µ
necessary to guarantee the existence of such a set H.

Zhang’s result deals with partition relations for the additive structure (R,+).
Given an additive structure (A,+) and cardinals κ, r, the partition relation A →+

(κ)r is the assertion that, for every coloring c : A → r, there is X ∈ [A]κ. such that
c ↾ (X + X) is constant, where X + X = {x + y | x, y ∈ X} (i.e., repetitions are
allowed). Hindman, Leader, and Strauss prove in [1] that, if 2ℵ0 < ℵω, then there
is r < ω such that R ̸→+ (ℵ0)r. It was then shown by Komjáth et al. [2] that,
modulo a large cardinal assumption, it is consistent that R →+ (ℵ0)r for all r < ω.
This was improved by Zhang [4], who removed the large cardinal assumption and
proved the following theorem.

Theorem 1 (Zhang, [4]). Suppose that P = Add(ω,ℶω) is the forcing notion to
add ℶω-many Cohen reals. Then in V P, we have R →+ (ℵ0)r for all r < ω.

This shows that the result of Hindman, Leader, and Strauss is at least con-
sistently sharp in the sense that, applying Zhang’s result to a model of GCH, we
obtain a forcing extension in which 2ℵ0 = ℵω+1 and R →+ (ℵ0)r holds for all r < ω.

An examination of Zhang’s proof and the assumptions on the size of µ needed
to prove the relevant ∆-system lemma shows that, for a fixed r < ω, if P is the
forcing to add at least ℶ+

4r-many Cohen, reals, then R →+ (ℵ0)r holds in V P. Our
proof lowers this ℶ+

4r to ℶ+
2r, thus providing a local improvement to Zhang’s result.

We first make a note of some of our notational conventions.

Notation 2. If X is a set and κ is a cardinal, then [X]κ = {Y ⊆ X | |Y | = κ}.
If a is a set of ordinals, then otp(a) denotes the order type of a under the natural
ordering of the ordinals. We will frequently conflate sets of ordinals with increasing
sequences of ordinals. So, for instance, if a is a set of ordinals and i < otp(a),
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then a(i) is the unique η ∈ a such that otp(a ∩ η) = i. If m ⊆ otp(a), then
a[m] = {a(i) | i ∈ m}. If a and b are sets of ordinals, then we write a < b to mean
that α < β for all (α, β) ∈ a× b.

A cardinal λ is said to be <κ-inaccessible if ν<κ < λ for all ν < λ.

The proof presented here is essentially the same as that in [4]; we provide details
just to verify that our ∆-system lemma is sufficient to carry out the proof. We first
give two definitions from [2] and [4].

Definition 3. Suppose that µ is a cardinal, m < ω, a ∈ [µ]m, and s : m → N.
Then s∗a is the function from µ to N defined by letting s(a(i)) = s(i) for all i < m
and s(α) = 0 for all α ∈ µ \ a. Notice that s ∗ a is then a member of

⊕
α<µ N.

Definition 4. Suppose that ℓ ≤ r < ω and 2 ≤ r. Define a function srℓ : r+ ℓ → N
by setting, for all j < r + ℓ,

srℓ(j) =

{
2 if j < 2ℓ

4 otherwise.

We also need to recall some notation and results about higher-dimensional ∆-
systems from [3].

Definition 5. Suppose that ℓ ≤ r < ω, with 2 ≤ r. Then define a set mr
ℓ ⊆ 2r by

letting mr
ℓ = {2k+1 | k < r} ∪ {2k | k < ℓ}. Notice that |mr

ℓ | = r+ ℓ. Given a set
a ∈ [On]2r, let arℓ = a[mr

ℓ ].

Definition 6. Suppose that a and b are sets of ordinals.

(1) We say that a and b are aligned if otp(a) = otp(b) and, for all γ ∈ a∩ b, we
have otp(a ∩ γ) = otp(b ∩ γ).

(2) If a and b are aligned then we let r(a, b) := {i < otp(a) | a(i) = b(i)}.
Notice that, in this case, a ∩ b = a[r(a, b)] = b[r(a, b)].

Definition 7. Suppose that H is a set of ordinals, 0 < n < ω, and, for all b ∈ [H]n,
ub is a set of ordinals. We call ⟨ub | b ∈ [H]n⟩ a uniform n-dimensional ∆-system
if there is an ordinal ρ and, for each m ⊆ n, a set rm ⊆ ρ satisfying the following
statements.

(1) otp(ub) = ρ for all b ∈ [H]n.
(2) For all a, b ∈ [H]n, if a and b are aligned, then ua and ub are aligned and,

if r(a, b) = m, then r(ua, ub) = rm.
(3) For all m0,m1 ⊆ n, we have rm0∩m1

= rm0
∩ rm1

.

Definition 8. Suppose that i < ρ are ordinals and a, b ∈ [On]ρ. We say that a
and b are aligned above i if a[ρ \ i] and b[ρ \ i] are aligned.

Definition 9. Suppose that a and b are sets of ordinals. Then the intersection
type of a and b, denoted tpint(a, b), is the set {(i, j) ∈ otp(a)×otp(b) | a(i) = b(j)}.

Definition 10. Suppose that I is a set and, for all i ∈ I, ui is a set of ordinals.
Then tp(⟨ui | i ∈ I⟩) is a function from otp(

⋃
i∈I ui) to P(I) defined as follows.

First, let
⋃

i∈I ui be enumerated in increasing order as ⟨αη | η < otp(
⋃

i∈I ui)⟩.
Then, for all η < otp(

⋃
i∈I ui), let tp(⟨ui | i ∈ I⟩)(η) := {i ∈ I | αη ∈ ui}.

Intuitively, tp(⟨ui | i ∈ I⟩) completely describes the order relations that hold
between entries in ⟨ui | i ∈ I⟩. We will often slightly abuse notation and write, for
instance, tp(u0, u1, u2) instead of tp(⟨u0, u1, u2⟩).
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Definition 11. Suppose that a is a nonempty set of ordinals and i < otp(a).

(1) We say that an ordinal α is i-possible for a if the following two statements
hold:
(a) if i > 0, then α > a(i− 1);
(b) if i+ 1 < otp(a), then α < a(i+ 1).
Intuitively, α is i-possible for a if a(i) can be replaced by α without changing
the relative positions of the other elements of a.

(2) If α is i-possible for a, then ai7→α is the set (a \ {a(i)}) ∪ {α}, i.e., the set
obtained by replacing the ith element of a with α.

Definition 12. Given a regular cardinal λ, recursively define σ(λ, n) for 1 ≤ n < ω

by letting σ(λ, 1) = λ and, given 1 ≤ n < ω, letting σ(λ, n + 1) =
(
2<σ(λ,n)

)+
.

Note that σ(λ, n) is regular for each 1 ≤ n < ω.

The following result is the higher-dimensional ∆-system lemma from [3].

Theorem 13. Suppose that

• 1 ≤ n < ω;
• κ < λ are infinite cardinals, λ is regular and <κ-inaccessible, and µ =
σ(λ, n);

• g : [µ]n → 2<κ;
• for all b ∈ [µ]n, we are given a set ub ∈ [On]<κ.

Then there are H ⊆ µ and k < 2<κ such that

(1) |H| = λ;
(2) g(b) = k for all b ∈ [H]n;
(3) ⟨ub | b ∈ [H]n⟩ is a uniform n-dimensional ∆-system.

Moreover, if n ≥ 2, for all a, b ∈ [H]n and all k < n, if it is the case that a and b
are aligned above k and a(k) = b(k), then, for any ordinal α ∈ H that is k-possible
for both a and b, we have tpint(ua, ub) = tpint(uak 7→α

, ubk 7→α
).

We are now ready to prove our adaptation of Zhang’s result. As mentioned
above, it is essentially the same as the proof from [4]. It was proven in [4] that
R →+ (ℵ0)2 holds in ZFC, so we only consider the case r > 2.

Theorem 14. Suppose that 2 < r < ω and P is the forcing to add at least ℶ+
2r-many

Cohen reals. Then, in V P, we have R →+ (ℵ0)r.

Proof. Let µ = (ℶ+
2r)

V , and let θ ≥ µ be a cardinal such that P = Add(ω, θ). We
think of conditions of P as being finite partial functions from θ to 2, ordered by
reverse inclusion.

We identify (R,+) with
(⊕

α<2ω Q,+
)
. We will actually show that, in V P, we

have
⊕

α<µ N →+ (ℵ0)r. Since we have 2ω ≥ θ ≥ µ in V P, this suffices.

Fix a P-name ċ for a function from
⊕

α<µ N to ω. We claim that the empty

condition forces the existence of an infinite X such that c ↾ (X +X) is constant.

For each ℓ ≤ r, let ḋℓ be a P-name for the function from [µ]r+ℓ to r defined by

letting ḋℓ(a) = ċ(srℓ ∗ a) for all a ∈ [µ]r+ℓ.
For each a ∈ [µ]2r, let Aa be a maximal antichain in P such that, for each q ∈ Aa

and each ℓ ≤ r, q decides the value of ḋℓ(a
r
ℓ). Since P has the countable chain

condition, each Aa is countable, so we can enumerate it (possibly with repetitions)
as ⟨qa,m | m < ω⟩. Let ua,m = dom(qa,m), and let q̄a,m : otp(ua,m) → 2 be
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defined by letting q̄a,m(i) = qa,m(ua,m(i)) for all i < otp(ua,m). For each ℓ ≤ r, let

wa,m,ℓ < r be such that qa,m ⊩ “ḋℓ(a
r
ℓ) = wa,m,ℓ”. Let ua =

⋃
m<ω ua,m.

Now the map g that takes a ∈ [µ]2r to the triple

⟨⟨q̄a,m | m < ω⟩, ⟨wa,m,ℓ | m < ω, ℓ ≤ r⟩, tp(⟨ua⟩⌢⟨ua,m | j < ω⟩)⟩

can easily be coded as a map from [µ]2r to 2<ω1 . Moreover, ua is countable for
all a ∈ [µ]2r, and µ = ℶ+

2r = σ(ℶ+
1 , 2r). Since ℶ+

1 is <ω1-inaccessible, we can
apply Theorem 13 to ⟨ua | a ∈ [µ]2r⟩ and g to obtain H ⊆ µ of size ℶ+

1 and a
fixed triple τ = ⟨⟨q̄m | m < ω⟩, ⟨wm,ℓ | m < ω, ℓ ≤ r⟩, t⟩ such that g(a) = τ
for all a ∈ [H]2r and ⟨ua | a ∈ [H]2r⟩ is a uniform 2r-dimensional ∆-system and
satisfies the “moreover” clause in the statement of Theorem 13. Let ρ < ω1 be
such that otp(ua) = ρ for all a ∈ [H]2r, and let ⟨rm ⊆ ρ | m ⊆ 2r⟩ witness that
⟨ua | a ∈ [H]2r⟩ is a uniform 2r-dimensional ∆-system.

Fix sets ⟨Ak | k < r⟩ such that each Ak is a subset of H of order type ω+1 and
Ak < Ak′ for all k < k′ < r. Let αk

0 = min(Ak) and αk
ω = max(Ak) for all k < r.

We identify elements of
∏

k<r[Ak]
2 as elements of [µ]2r in the obvious way.

Let G be P-generic over V , and let c and ⟨dℓ | ℓ ≤ r⟩ be the realizations of ċ and

⟨ḋℓ | ℓ ≤ r⟩, respectively, in V [G]. For every a ∈ [H]2r, there is a unique ma < ω
such that qa,ma

∈ G. Working now in V [G], we will recursively construct a matrix
of ordinals ⟨αk

j | k < r, j < ω⟩ such that, for each k < r, ⟨αk
j | j < ω⟩ is an

increasing sequence of ordinals in Ak \ {αk
ω} (note that we have already specified

αk
0 = min(Ak)). At the end, we will let A∗

k = {αk
j | j ≤ ω}. Our construction will

be by recursion on the anti-lexicographic order on r×ω, i.e., we set (k, j) < (k′, j′)
iff j < j′ or (j = j′ and k < k′). To specify the requirements our construction will
satisfy, we need some further definitions.

At the end of the construction, an element a ∈
∏

k<r[A
∗
k]

2 will be called canonical

if a = {α0
j0
, α0

j′0
, α1

j1
, α1

j′1
, . . . , αr−1

jr−1
, αr−1

j′r−1
}, where

• for each k < r, we have jk < j′k;
• for each k0 < k1 < r, we have jk0

< jk1
;

• for each k < r, we have jr−1 < j′k;
• for each k0 < k1 < r, if j′k0

< ω, then j′k0
≤ j′k1

.

If a = {α0
j0
, α0

j′0
, . . . , αr−1

jr−1
, αr−1

j′r−1
} ∈

∏
k<r[A

∗
k]

2 is canonical, then the index of a

is the set {jk | k < r}. Note that this is an element of [ω]r. In our construction,
we will arrange so that, for every canonical a ∈

∏
k<r[A

∗
k]

2 and every ℓ ≤ r,
the value of dℓ(a

r
ℓ) depends only on the index of a. This will be arranged in the

following way: for each canonical a = {α0
j0
, α0

j′0
, . . . , αr−1

jr−1
, αr−1

j′r−1
} ∈

∏
k<r[A

∗
k]

2,

let â = {α0
j0
, α0

ω, . . . , α
r−1
jr−1

, αr−1
ω }. In other words, â is the canonical element of∏

k<r[A
∗
k]

2 with the same index as a and whose other elements are precisely the

elements of {αk
ω | k < r}. We will ensure that, for every canonical element a, we

have ma = mâ. It will follow that dℓ(a
r
ℓ) = dℓ(â

r
ℓ) = wmâ,ℓ.

We now describe the construction of ⟨αk,j | k < r, j < ω⟩. We have already
specified αk,0 for all k < r. Now fix (k∗, j∗) ∈ r×ω with j∗ ≥ 1, and suppose that we
have defined αk,j for all (k, j) < (k∗, j∗). For each k < r, let Bk = {αk,j | (k, j) <
(k∗, j∗)}∪{αk,ω}, i.e., Bk is the portion of A∗

k that has already been specified. The
notion of a canonical element of

∏
k<r[Bk]

2 is straightforwardly inherited from the
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notion of a canonical element of
∏

k<r[A
∗
k]

2. Our recursion hypothesis is simply
that, for every canonical element a, we have ma = mâ.

We call a canonical element a = {α0
j0
, α0

j′0
, . . . , αr−1

jr−1
, αr−1

j′r−1
} of

∏
k<r[Bk]

2 rele-

vant if j′k = ω for all k with k∗ ≤ k < r. Let

q∗ =
⋃

{qa,ma | a is a relevant canonical element}.

Since there are only finitely many relevant canonical elements, we have q∗ ∈ G.
Also, for each relevant canonical element a and each α ∈ Ak∗ \ ({αk∗

ω } ∪αk∗

j∗−1), let

aα = a(2k∗+1)7→α = (a \ {αk∗

ω }) ∪ {α}.

Claim 15. There is α ∈ Ak∗\({αk∗

ω }∪αk∗

j∗−1) such that, for every relevant canonical
element a, we have maα = ma, i.e., qaα,ma ∈ G.

Proof. Assume not. Note that, since there are only finitely many canonical relevant
elements, each of which is a finite set of ordinals and hence in V , the statement of the
claim is expressible in V as a statement in the forcing language for P. Therefore,
since the claim fails, we can fix a single condition s ∈ G that forces its failure.
Assume without loss of generality that s ≤ q∗.

Let m = 2r \ {2k∗ + 1}, and let C = Ak∗ \ ({αk∗

ω } ∪ αk∗

j∗−1). For each relevant
canonical element a, the set {uaα

| α ∈ C} is a ∆-system whose root is equal
to uaα

[rm] for each α ∈ C. Since there are only finitely many relevant canonical
elements a and since dom(s) is finite, we can therefore fix α ∈ C such that, for
every relevant canonical element a, we have (uaα

\ uaα
[rm]) ∩ dom(r) = ∅. Let

q∗∗ = s ∪
⋃

{qaα,ma | a is a relevant canonical element}.

We claim that q∗∗ is a condition in P, i.e., it is actually a function. To see this, it
suffices to verify the following two statements:

• For every relevant canonical element a, we have s ∥ qaα,ma
.

• For every pair of relevant canonical elements a and b, we have qaα,ma ∥
qbα,mb

.

To verify the first statement, fix a relevant canonical element a. By our choice
of α, we have dom(qaα,ma

) ∩ dom(s) ⊆ uaα
[rm]. But aα and a are aligned, with

r(aα, a) = m, so uaα
[rm] = ua[rm]. By the fact that g is constant on [H]2r, we

have qaα,ma
↾ uaα

[rm] = qa,ma
↾ ua[rm]. But s ≤ qa,ma

, so s ≤ qaα,ma
↾ uaα

[rm],
so s ∥ qaα,ma .

To verify the second statement, fix a pair of relevant canonical elements, a and b.
It easily follows from the definitions of “relevant” and “canonical” that a and b are
aligned above 2k∗+1. Moreover, we have a(2k∗+1) = b(2k∗+1) = αk∗

ω . Therefore,
by the “moreover” clause of Theorem 13, we have tpint(ua, ub) = tpint(uaα

, ubα).
Now suppose for sake of contradiction that qaα,ma

⊥ qbα,mb
. Then there is γ ∈

dom(qaα,ma)∩dom(qbα,mb
) such that qaα,ma(γ) ̸= qbα,mb

(γ). Fix ia, ib < ρ such that
γ = uaα(ia) = ubα(ib). Then (ia, ib) ∈ tpint(uaα , ubα), so (ia, ib) ∈ tpint(ua, ub), so
there is δ such that δ = ua(ia) = ub(ib). By the fact that g is constant on [H]2r,
we have

qa,ma(δ) = qaα,ma(γ) ̸= qbα,mb
(γ) = qb,mb

(δ),

and hence qa,ma
⊥ qb,mb

. But, by assumption, we have qa,ma
, qb,mb

∈ G, which is a
contradiction.
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This finishes the verification that q∗∗ is a condition. But now note that q∗∗

extends s and forces that α witnesses the truth of the claim, contradicting our
choice of s. Therefore, the claim holds. □

We can now let αk∗

j∗ be any α witnessing the truth of Claim 15. Let us verify
that this maintains the recursion hypothesis. For k < r, let B′

k = Bk if k ̸= k∗, and

let B′
k∗ = Bk∗ ∪ {αk∗

j∗ }. Fix a canonical element a of
∏

k<r[B
′
k]

2. We must show

that ma = mâ. By the recursion hypothesis, we may assume that αk∗

j∗ ∈ a. Note

that, for all k < r with k > k∗, we have not yet defined αk
j∗ . Therefore, by the

definition of “canonical element”, we must be in one of two cases:
Case 1: αk∗

j∗ = a[2k∗] and k∗ = r − 1. Again by the definition of “canonical

element”, it must be the case here that a[2k + 1] = αk
ω for all k < r. Hence, a = â,

so the recursion hypothesis is trivially satisfied.
Case 2: αk∗

j∗ = a[2k∗ + 1]. Here, it must be the case that a[2k + 1] = akω for
all k < r with k > k∗. Let b = a(2k∗+1) 7→αk∗

ω
, and, for notational simplicity, let

α = αk∗

j∗ . Then b is a relevant canonical element of
∏

k<r[Bk]
2. Notice that a = bα,

so by our choice of α, we have ma = mb. By our recursion hypothesis, we have

mb = mb̂. But b̂ = â, so ma = mâ.
We have thus maintained our recursion hypothesis and can move on to the next

step of the construction. This therefore completes our construction of ⟨A∗
k | k < r⟩.

The rest of the proof is exactly as in [4], but we provide a sketch for completeness.
By our construction of ⟨A∗

k | k < r⟩, for each ℓ ≤ r we have a well defined function
fℓ : [ω]r → r such that, for each y ∈ [ω]r and each canonical a ∈

∏
k<r A

∗
k, if the

index of a is y, then dℓ(a
r
ℓ) = fℓ(y). By Ramsey’s theorem, there is an infinite Y ⊆ ω

such that each fℓ is constant on [Y ]r, say with value εℓ < r. By throwing away
the elements of ω \Y and reindexing, we may assume for notational simplicity that
Y = ω, i.e., for every canonical a ∈

∏
k<r A

∗
k and every ℓ ≤ r, we have dℓ(a

r
ℓ) = εℓ.

By the pigeonhole principle, there are ℓ0 < ℓ1 ≤ r such that εℓ0 = εℓ1 =: ε. For
all j < ω, define aj ∈

∏
k<ℓ0

[A∗
k]

2 ×
∏

ℓ0≤k<r A
∗
k by specifying that aj contains the

following:

•
{
αk
k, α

k
ω

}
for each k < ℓ0;

•
{
αk
k+(j+1)r

}
for ℓ0 ≤ k < ℓ1;

•
{
αk
ω

}
for each ℓ1 ≤ k < r.

Note that aj ∈ [H]r+ℓ0 . Let xj = 1
2s

r
ℓ0

∗ aj ∈
⊕

α<µ N, and let X = {xj | j < ω}.
We claim that c ↾ (X +X) is constant with value ε. There are two things to verify.

First, we must show that c(xj + xj) = ε for all j < ω. Thus, fix j < ω. Let
a = aj ∪ {akk | ℓ0 ≤ k < r}. Then a is a canonical element of

∏
k<r[A

∗
k]

2 and
arℓ0 = aj . Therefore, we have

c(xj + xj) = c(srℓ0 ∗ aj) = dℓ0(a
r
ℓ0) = εℓ0 = ε,

as desired.
Next, we must show that c(xj +xj′) = ε for all j < j′ < ω. Thus, fix j < j′ < ω.

Let a = aj ∪ aj′ ∪ {akk+(j+1)r | ℓ1 ≤ k < r}. The following facts are easily verified.

• a is a canonical element of
∏

k<r[A
∗
k]

2.
• arℓ1 = aj ∪ aj′ .
• xj + xj′ = srℓ1 ∗ (aj ∪ aj′).
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As a result, we have

c(xj + xj′) = c(srℓ1 ∗ (aj ∪ aj′)) = dℓ1(a
r
ℓ1) = εℓ1 = ε.

We have thus shown that c ↾ (X +X) is constant with value ε, thus finishing the
proof. □
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